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Chapter 0

Introduction

The Chern Simons form as a topological invariant of three-manifolds first appeared in [1].

Its use as a Lagrangian of a quantum field theory was done way back in ’82 [2] in the

context of generating topological mass in gauge theories. However it was Witten [3], who

first related its quantum field theoretic properties with knot polynomials, thus establishing

‘Chern-Simons (to be referred as CS from now on) theory’ as a viable non-trivial theory

and hence appealing in its own right to both mathematicians and mathematical physicists.

It is a first order topological gauge theory and has the following physical properties.

• It does not have local (or) propagating degrees of freedom. This means that there

are exactly that many constraints (in Dirac’s classification) coming from gauge in-

variance, which suffice to ‘kill’ the superficial local field degrees of freedom. This

essentially boils down to the fact that the physical or gauge invariant phase space

is at most finite dimensional as is the case for particle mechanics with finite degrees

of freedom. Put differently, there is no gauge mediator here, unlike any other gauge

theory describing particle interactions.

• Secondly, from the physicists point of view, it is striking to observe that the CS

Lagrangian ‘does not need’ a ‘space-time’ metric unlike other field theories. Hence

it can consistently be defined on a manifold without (pseudo) Riemannian struc-

tures. However in order to connect with the physical world we assume manifolds

which can be split locally as X = [0, 1] × Σ, where Σ is any orientable 2-surface.

This assumption (by introducing by hand a ‘time’ interval) helps us performing the

canonical analysis of the dynamics.

1
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• Independence of any background metric enables it with the whole diffeomorphism

group as its (gauge) invariance beside the usual ‘gauge group’ relevant to any gauge

theory.

• Time re-parametrization is among the set of diffeomorphism invariances (as is also

the case of any generally covariant theory). This means that the local Hamiltonian

function vanishes as a first class constraint (in Dirac’s terminology).

• The Lagrangian contains only first derivative of the basic dynamical variable, the

connection. Hence equation of motion also involves first derivative unlike other field

theories.

0.1 Defining the classical CS

Before proceeding further with properties of CS theory which have been chronologically

unveiled in literature, we digress a little bit on the basic framework needed for the def-

inition of a classical CS theory. As a set-up, one needs the following ingredients: a

differential 3 manifold X, a Lie group G (preferably connected, simply connected and

having a semi-simple Lie algebra g) and a chosen finite dimensional representation R of

g. We should then construct a principal G bundle π : P → X and its associated vector

bundle E → X with structure group G. The connections on P (or rather its pull-back to

X) are the dynamical variables of CS theory (like any other gauge theory). Now, these

connections take value in the Lie algebra g. On the other hand, for obvious reasons, the

physical action functional maps connections to R (at most C in certain physically allowed

cases). It is then intuitively clear to us, that in order to construct an action we need a

symmetric, bilinear, Ad-invariant form trR : 〈·, ·〉 → R on g for a particular representation

R. Consider now the vector bundle E. From Chern-Weil theory, we know the de-Rahm

cohomology of the Chern characteristic class (they are closed). The second Chern class

is a four form whose anti-derivative in the local form is the Chern-Simons 3-form.

One should remember, at this point, that the CS form just described is defined on P .

However for all physical purposes we need its local version back on X. In this situation

we have to choose smooth local sections of p : X → P . The next step is to pull back the
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global CS form on P through the map p∗ to X. If the gauge group G is connected and

simply connected, it can be shown that these principal bundles can be made trivial and

that they allow smooth global sections [4]. Therefore one can write the action functional

as an integral of the pulled back CS form from P to X:

S[A] =
k

4π

∫
X

trR

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(0.1)

where A : X → g is the local form of the connection on X. In general, k ∈ R, which

however takes integral values in special cases. Obviously now, maps between sections of

P induce transformation in the local (section dependent) connection A. These are the

standard gauge transformations: A → g−1Ag + g−1dg, where g : X → G. If ∂X = ∅,

then (0.1) is gauge invariant, upto integral of the the Wess-Zumino-Witten term

∼ trR(g−1d g ∧ g−1d g ∧ g−1d g) ∈ H3(G,R).

However in the other case, where X does have a non-empty boundary, the action

depends upon the choice of section (and hence choice of gauge) on ∂X through trR(g−1A∧
dg). The analysis of functional differentiability of (0.1) with respect to A is somewhat

involved and we prefer not to delve into that right now. However we take note of the fact

that the answer to the questions regarding this is affirmative and the equation of motion

that comes out of the ensuing variational calculation is summarized as:

dA+ A ∧ A = 0; (0.2)

ie, the connections should be ‘flat’. We will come back to the classical properties of the

theory later, with phase space analysis.

0.2 Relationships with conformal field theory and knot theory

Despite being a theory of flat connections, which is devoid of propagating degrees of free-

dom, quantum CS theory have been attracting much interest of mathematical physicists

for a long period. It was Atiyah, who suggested that a connection should exist between

knot theory (Jones’ braid group) [5] representations and mapping class group representa-
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tions coming from conformal field theories 1. He moreover stressed that these apparently

disconnected topics be merged by a gauge theory in 3 or 4 dimensions. This is because

2-D conformal field theory on its own does not provide any explanation for this seemingly

weird relation with invariants of 3-manifolds. Now, the later representations were exten-

sively studied by physicists [7–9]. It was however Schwarz’s, who pinned down that such

a link may exist through CS theory [10]. Finally, Edward Witten’s exposition [3] made

this relation explicit.

The primary question that crops up in this milieu is regarding the entente between

CS theory and conformal field theories. 2 The structure of the Hilbert space (of quantum

states) of quantum CS theory is again same as the space of conformal blocks that appear

in conformal field theory of current algebra for CFTs with Lie algebra symmetry.

On the other hand, the naturally gauge invariant objects of a gauge theory are Wilson

loops. For a closed loop C and for a particular representation R of the Lie algebra, one

can construct a Wilson loop as :

W C
R = trR

(
P exp

(∫
C
A

))
(0.3)

with P denoting a path ordering prescription. Now, consider a link

L =
⋃

i=1...n

Ci

with Ci being oriented knots. For example, the vacuum expectation value

〈WL
j= 1

2
〉 = Z−1

∫
[DA]/(gauge)WL

j= 1
2

exp(iS)

1However, one should not forget to mention other (than 2 dimensional conformal field theories) affairs

knot polynomials share with physical systems in 2 dimensions. These include essentially integrable

systems [6].
2Along with the development of the quantization procedure of CS later in this thesis, it will become

clear, that for three manifolds, (which can be split as R × Σ) the topology of Σ becomes one of the

most important factors. The moduli space of connections, which serves as the symplectic manifold of the

theory depends upon Σ both in terms of its topology and complex (Kähler) structure. The Hilbert space

of physical states (in terms of theta functions) constructed upon the moduli space is in general finite

dimensional (considering the moduli space to be compact and connected).
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of the Wilson loops over the link L defined for the representation j = 1
2

of gauge group

SU(2) gives the Jones polynomial (in the variable q = exp( 2πi
k+2

), k being the CS level)

invariant associated with the link. One has other invariant polynomials for other rep-

resentations and other groups. We refer to [11] and references therein for an elaborate

account of knot invariants coming from different compact gauge groups.

However when one does not consider links in a manifold, CS theory still offers topologi-

cal invariants. For example, perturbative evaluation of the path integral at one loop [12,13]

gives the Ray Singer analytic torsion, which are well-known 3-manifold invariants.

0.3 Entrance of quantum gravity

Einstein’s general relativity (GR), is till date the most successful candidate for describ-

ing gravitational interaction. It has enormous precision, compared to the ones enjoyed

by electro-weak theory in predicting celestial events, be it bending of light or mercurial

precession. However like all other physical theories, general relativity has its limitations

and self-consistency problems, which force one to look beyond classical version of the the-

ory. Any plausible theory of quantum gravity should address some fundamental problems

where classical GR gets stuck. These include the problem of singularities (big bang and

the physical singularities covered by the black-hole horizon), the essentially non-classical

and statistical mechanical origin of black-hole thermodynamics, information loss para-

dox and re-establishing semi-classical physics starting from the Plank-scale arena among

others.

We must spell out here that as a theoretical problem, quantizing gravitational inter-

actions, is one of the most notorious ones faced by physicists till now. This is primarily

because of non-renormalizability of 4 dimensional general relativity, unlike the viable

models of particle physics. The way-out from this obstacle may include looking beyond

standard wisdom of perturbative renormalization program, the holy grail of high energy

physics. The most promising candidate in this direction is string theory where one adopts

a framework, which uses manifestly finite amplitudes. String theory has shown its robust-

ness and stood upto many of the expectations, as far as quantum gravity is concerned.

But string theory has its own problem regarding background independence, which any
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perturbative approach towards quantum gravity is plagued with. In addition to that,

unitarity of graviton scattering S matrix and the associated information-loss problem are

among some questions, which the theory has still fallen short of answering.

The immediately next (in terms of effort put into) avenue is loop quantum gravity

(LQG), which starts with the goal of considering gravity alone and does not attempt

to develop a quantum theory of all other matter and interaction at a same go. This

framework in manifestly non-perturbative, background independent and retains general

covariance at each step. Number of successful resolution of physical problems in LQG

is somewhat satisfactory. However, it suffers with ailments like non-uniqueness of the

regularization of the diffeomorphism, Hamiltonian and volume operator.

With this extremely brief outline of the treatment of quantum gravity at hand, we

wish to refuge to the original discussion: some of the uses of CS theory in quantum gravity

and associated literature survey.

0.3.1 ABJM and Bagger-Lambert theory

Let us briefly take note of another very interesting recent advancement in CS theory in

context of string/ M theory. To be precise, this is achieved through M theory duality [14]

and named ABJM theory. Unlike our study in pure gravity, in this case one needs to

consider a super-symmetric (N = 6) version of it, in order to have conformal invariance.

This is done in view of duality (AdS4/ CFT 3) between bulk M theory on AdS4 × S7/Zk
and superconformal CS theory. Actually a U(N) × U(N) Chern Simons theory with k

and −k as levels, sufficiently supplemented with matter fields are employed to describe N

M2 branes. At large k ’t Hooft limit however (one dimension for the M theory description

getting compactified) the duality is precisely expressed in terms of type IIA string theory

on AdS4 × CP3. At this limit this duality is considered as the second most important

example of AdS/CFT duality.

Number of plausible conformal field theories in dimensions greater than 3, is limited.

On the other hand world-volume theory of eleven dimensional M theory is supposed to

be conformal. Highly super-symmetric CS theories are conformal and therefore are good

candidates for describing world-volume theories of M theory (M2 brane) [15]. This is
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another interesting way, in which, CS is being used in M theory context.

0.3.2 3 dimensional quantum gravity and Chern Simons theory

Resorting to dimensions less than 4 may be uncomfortable in general consensus 3. We

assert that results from 3 dimensional quantum gravity do not directly yield physical

results for the real 4 dimensional case. Moreover classical gravity in three space-time

dimensions does not possess local degrees of freedom, which may render it apparently

trivial as a physical theory. This feature however makes sure that 3D quantum gravity

can be exactly solved [16] in certain cases. Despite this superficial simplicity, 3D quan-

tum gravity has its usefulness in providing interesting information [17] about what to

expect from some of the major issues in the 4 dimensional counterpart. Studies in 3D

gravity captured attention mainly after one of the most important discoveries in the field:

finding the BTZ black-hole solution [18]. Another result, which turns out to be of great

significance in the light of relatively recent studies in holographic duality was given way

back in ’86 [19]. This work showed firstly, the existence of the conformal algebra as the

asymptotic symmetry of asymptotically AdS3 spaces and secondly appearance of central

extensions in its canonical realization.

One may now ask: where does CS theory enter in this set up? Answer again lies within

Witten’s work [16]. We take this chance to remind ourselves that although Einstein’s

metric formulation of a generally covariant theory of gravity is the most standard one,

a number of alternative descriptions have arisen with time. The most prominent one

is the first order formulation with frames and connections. Once formulated in these

variables, classical 3D gravity theory essentially becomes a Chern Simons theory with

the gauge group depending upon the cosmological constant and the equivalence becomes

exact as far as classical analysis is concerned 4. At the face value one can appreciate this

connection, since both 3D gravity and Chern Simons theory are devoid of propagating

degrees of freedom. But, there are ways to incorporate local physical modes without

incorporating matter degrees of freedom, which became known as topologically massive

3Dimensions greater than 4 are of somewhat ease, thanks to string/M theory. That is, decent to 4

dimensions by shrinking compact dimensions is a fairly understood mechanism.
4We will get back to the credibility of this equivalence at the quantum level later [20]
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gravity [2]. Relatively recently, newer excitement in this field has been observed, due to the

connection of higher spin theories in 3d gravity, its Chern Simons avatar and holographic

dualities (see [21], [22] for example). As we progress through this thesis, we will present

more commentaries on the development and features as they appeared chronologically in

literature.

0.3.3 4 dimensional quantum gravity and Chern Simons theory

The appearance of Chern Simons theory in 4 dimensional gravity is more dramatic than

the 3 dimensional counterpart and the results following from it are even more interest-

ing. In order to present a brief description, we first consider a null three dimensional

submanifold (which is a boundary)in a 4 dimensional space-time (arbitrary), equipped

with a set of geometric properties. However no a-priori background is fixed. The minimal

geometric structures render the 3-manifold with the properties of a local horizon [23],

giving it a name isolated horizon. One of the advantages of it having a local description

is that arbitrary matter and radiation are allowed to exist outside the horizon. This

construction is purely kinematical. One then ventures into the quantum theory. As a

first step towards that is to study gravitational dynamics on and in presence of isolated

horizons. The favoured formulation for gravitational dynamics for this purpose is the first

order one. In this framework, it turns out that the degrees of freedom on the horizon are

governed effectively by a CS theory [24]. It was demonstrated that this has U(1) 5 gauge

invariance.

Once one has CS (level of which is proportional to the area of the compact slicing

of the isolated horizon), quantum modes residing on the horizon itself become known.

But as one progresses in LQG, such a quantization has to be done consistently with the

quantization of the bulk degrees of freedom. A careful calculation about the boundary

quantum states consistent with the bulk states gives us a handle to estimate a microstate

counting with a fixed horizon area (and hence CS level). This results in reproducing

the Bekenstein-Hawking black hole entropy. Using a finer counting later, true quantum

corrections to this entropy was calculated [25].

5However it was later contested by many calculations from other groups who advocated for an SU(2)

theory. We will comment in detail later in the thesis on this topic.



Chapter 0. Introduction 9

0.4 Plan of the thesis

Clearly the thesis can be viewed as a union of two ‘almost’ mutually disjoint topics, ie

quantum gravity in 3 and 4 dimensions, unified by the common theme of Chern Simons

theory. In this view we partition the work broadly in these two sectors.

Part-1: 3D Gravity

In chapter 2, the first one in the first sector, we present a classical kinematical and

dynamical analysis of 2+1 gravity. We discuss the equivalence of it with CS theory, in-

cluding the variation of the gauge group in different cases. Moreover classical dynamics is

studied in both canonical and covariant formalism. As an improvement over the conven-

tional theory we introduce a dimensionless parameter γ in the theory which would prove

to be useful in developing a quantum theory later on.

With this basic set-up at hand, we delve into building a model quantum theory of

Lorentzian 3d gravity with negative cosmological constant in chapter 3. As a choice

of space-time topology we took spatial slices as genus-1 Riemann surfaces. We carry

out the quantization in constrain first approach, which deals with first finding out the

physical phase space (moduli space of flat connections) and then quantizing it (geometric

quantization is chosen for this purpose, owing to the non-trivial topological nature of the

phase space). We construct a finite dimensional Hilbert space and stress the importance

of γ in light of this Hilbert space.

Topic of the next chapter (ch. 4) however roams mostly in the classical and semi-

classical arena. We consider asymptotically AdS3 spaces which also incorporate isolated

horizons. We derive dynamics of the horizon, zeroth and the first law of black hole me-

chanics and observe the influence of γ. Moreover, we show the canonical implementation

of asymptotic Witt algebra in symplectic geometry framework and recover the asymptotic

Virasoro algebra, from which semi-classical entropy of BTZ black hole (as a function of

γ) is calculated.

Our next project, which is the subject matter of chapter 5 is in the regime of Euclidean

signature and positive cosmological constant. We calculate partition function of 3d gravity

starting from CS framework on prototype Lens space topologies and sum over all possible

topologies. Once again the might of γ was revealed, in taming the divergences.
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Part-2: 4D Gravity

We then shift gear and move over to problems in more realistic world of 4 dimensions.

Our work in 4 dimensional context revolves around generalized (local) versions of black-

hole event horizon, namely isolated or non-expanding horizon. We take-up this framework

in order to facilitate the study of quantum excitations on black hole horizons in the regime

of Loop Quantum Gravity (LQG). In doing so we would focus on the utility of CS theory

in studying horizon mechanics.

In chapter 6, we would like to make the stage for later quantum calculations. This

involves studying the classical kinematical and dynamical issues of gravitational interac-

tion on non-expanding horizon. In particular we analyse the reduced local symmetry on

the horizon.

The next and the penultimate chapter involves the details of black hole entropy cal-

culation upto logarithmic correction using SU(2) Chern Simons theory.

We then come to an end by summarizing the works presented in the thesis and citing

some possible future directions.



3D Gravity
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Chapter 1

Kinematics and Classical Dynamics

General theory of relativity is usually formulated as a theory of metrics. But it can also

be recast as a theory of connections (on a principle G-bundle). Even Einstein, the master

himself and Schroedinger initiated a project to formulate general relativity in terms of

connections. It became complicated because they chose to use Levi-Civita connection.

Things become more systematic and simpler if one wishes to use spin-connections. In

connection variables general relativity apparently a close relative of gauge theories. In

fact, it is well known (and we will demonstrate below) that in three dimensions, gravity

exactly becomes a gauge theory in connection (first order) formulation. Despite this

alluring similarity, as a cautionary remark, we must also mention that unlike the other

gauge theories encountered in the arena of particle physics, gravity as a gauge theory

should be independent of any background geometrical structure. In this chapter our goal

is to set up the classical framework, on which most of the first part of this thesis is based.

To start with, we consider a three manifold M , preferably without boundary. Consider

a frame bundle π : F → M on it with fibres as 3-D vector spaces. We also have the

canonical bundle π : T → M , the tangent bundle on it, whose fibres are also 3-D vector

spaces. We now define define isomorphism between these fibres point wise on M:

e(p) : F(p) → T(p) ∀p ∈M.

For dim(M) = 3 these invertible maps are called triads (dreibeins). In particular its

action on a vector VI ∈ F(p) to the vector Vµ ∈ T(p) is expressed as: eIµ(VI) = Vµ and

its inverse appears trivially. This action can thus be generalized on contravariant vectors

and arbitrary higher rank tensors.

12
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Keeping in mind the pseudo-Riemannian structure of gravity, we associate a metric

tensor (degenerate, as it should be) on Fp for each p. In suitable basis, this metric can

always be viewed as η = diag(−1, 1, 1). Automatically we have SO(2, 1) or SU(1, 1) as

the structure group of F .

From now on we will use the 1-form eI = eIµdx
µ as one of the dynamical variables and

action of the structure group in the defining representation on it will be eI → ΛI
Je

J .

The other dynamical variable we will use is the connection ω on F . In general it is an

antisymmetric tensor in fibres of F and a 1-form in fibres of T . Since M is 3 dimensional,

using the total anti symmetric form of F(p) we can use ω (rather its local section form) as

the 1-form ωI = ωIµdx
µ.

We will be using this pair e, ω throughout the first part (3D gravity part of this thesis)

as the set of dynamical variables. We would start with the classical action of 3D gravity,

then construct its classical phase space and perform the canonical analysis. Results of

this chapter, which are well known in 3-d gravity literature will be recalled frequently in

the first part of the thesis. Also note that these analyses broadly follow those presented

in our paper [26].

1.0.1 Formulating 2+1 Gravity as a Chern Simons theory

Action for 2+1 gravity with negative cosmological constant Λ = − 1
l2

on a space time

manifold M in first order formalism is

IGR = 2

∫
M

eI ∧
(

2dωI + εI
JKωJ ∧ ωK +

1

3l2
εI
JKeJ ∧ eK

)
(1.1)

We have chosen units such that 16πG = 1 = c and will continue using this unit unless

mentioned at special instances, where explicit presence of G is crucial in terms of physical

plausibility of a result. Moreover the sign of cosmological constant can be chosen to be

positive and we will point out the changes due to that when needed.

The above action is well defined and functionally differentiable in absence of bound-

aries. In presence of boundary (internal and/or asymptotic) [27] one has to add suitable

boundary terms to the action in order to have a finite action with well defined (differen-

tiable) variation.
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The equations of motion that follow from the action (1.1) are:

FI := 2dωI + εI
JKωJ ∧ ωK = − 1

l2
εI
JKeJ ∧ eK (1.2)

TI := deI + εIJKe
J ∧ ωK = 0 (1.3)

As expected, these equations of motion, combined are equivalent to the Einstein’s

equation. To be more explicit, one first makes the identification with pseudo Riemann

metric: eIµe
J
νηIJ = gµν . The next step is to solve ω from (1.3) in favour of e and substitute

back in (1.2). This then gives Einstein’s equation.

A more general model for 2+1 gravity with negative cosmological constant was in-

troduced by Mielke et al [28, 29] and later studied extensively in [30–32], which without

matter fields read:

I = aI1 + bI2 + α3I3 + α4I4 (1.4)

where

I1 =

∫
M

eI ∧
(
2dωI + εI

JKωJ ∧ ωK
)

I2 =

∫
M

εIJKeI ∧ eJ ∧ eK

I3 =

∫
M

ωI ∧ dωI +
1

3
εIJKω

I ∧ ωJ ∧ ωK

I4 =

∫
M

eI ∧ deI + εIJKω
I ∧ eJ ∧ eK

However this model does not reproduce the equations of motion (1.2) and (1.3) for ar-

bitrary values of the parameters a, b, α3, α4. We choose, as a special case of the above

model, those values of these parameters which gives the expected equations of motion as

in [16,20,30,33–41]:

a = 2 b =
2

3l2
α3 =

2

γ
α4 =

2

γl
(1.5)

γ is introduced as new dimensionless parameter from 2+1 gravity perspective. Effectively

(1.5) is the equation of a 3 dimensional hypersurface parametrized by G, l, γ in the 4-d

parameter space of a, b, α3, α4. It may now be tempting to argue that the term added to
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the ‘original’ action (1.1) is a total derivative for the choice (1.5). However the reality

is that, the new term on its own also produces the same equations of motion. This will

become clearer as we go through the CS counterpart of the story in the following.

We take this opportunity for a little digression for the Chern Simons formulation.

Following [16, 30] one introduces the SO(2, 1) or equivalently SL(2,R) or SU(1, 1) con-

nections for a principal bundle over the same base space of the frame bundle:

A(±)I := ωI ± eI

l
.

It is easily verifiable that the action

Ĩ = l
(
I(+) − I(−)

)
(1.6)

is same as (1.1) in absence of boundaries. Where

I(±) =

∫
M

(
A(±)I ∧ dA(±)

I +
1

3
εIJKA

(±)I ∧ A(±)J ∧ A(±)K

)
(1.7)

are two Chern Simons actions with gauge group SO(2, 1), the lie algebras being given by[
J

(+)
I , J

(+)
J

]
= εIJKJ

(+)K
[
J

(−)
I , J

(−)
J

]
= εIJKJ

(−)K[
J

(+)
I , J

(−)
J

]
= 0. (1.8)

The metric on the Lie algebra is chosen to be

〈J (±)I , J (±)J〉 =
1

2
ηIJ

where J (±)I span the so(2, 1) (or sl(2,R) or su(1, 1)) Lie algebras for the two theories.

One striking feature of this formulation is that the last two terms of (1.4) can also be

incorporated in terms of A(±), for (α3 = l2α4) as:

I(+) + I(−)

= 2

∫
M

(
ωI ∧ dωI +

1

l2
eI ∧ deI +

1

3
εIJKω

I ∧ ωJ ∧ ωK +
1

l2
εIJKω

I ∧ eJ ∧ eK
)
(1.9)

and the same equations of motion (1.2) and (1.3) are also found from varying this action.
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We thus propose the action

I = l
(
I(+) − I(−)

)
+
l

γ

(
I(+) + I(−)

)
= l

[
(1/γ + 1) I(+) + (1/γ − 1) I(−)

]
(1.10)

with a dimensionless non-zero coupling γ. This action (1.10) upon variations with respect

to A(+) and A(−) give equations of motion as expected from Chern Simons theories. This

imply that the connections A(±) are flat:

F (±)
I := dA

(±)
I + εIJKA

(±)J ∧ A(±)K = 0. (1.11)

It is also easy to check that the above flatness conditions of these SO(2, 1) bundles (1.11)

are equivalent to the equations of motion of general relativity (1.2), (1.3).

So far we have been talking about a case, where cosmological constant Λ is taken to

be negative definite. We also considered the frame space to have an internal Lorentzian

metric. However, there are cases, especially for path integral quantization, one has to

take recourse to a Euclideanized version of the theory. Depending upon the choice of

signature and the sign of the cosmological constant Λ, the CS gauge groups vary. The

possible gauge groups in all the possible scenarios are tabulated below. We also list the

homogeneous solutions (of the Einstein’s equation) for various values of Λ

Λ Homogeneous solution CS gauge group

Lorentzian Euclidean

= 0 Minkowski ISO(2, 1) ISO(3)

> 0 dS3 SO(3, 1) SO(4) ' SU(2)× SU(2)

< 0 AdS3 SO(2, 2) ' SL(2,R)× SL(2,R) SO(3, 1)

This is a good point to stop and probe into the physical relevance of this new parameter

comparing with 3+1 dimensional gravity. In order to proceed we notice that the new

action is in spirit very much like the Holst action [42] used in 3+1 gravity. In our case the

parameter γ can superficially be thought of being the 2+1 dimensional counterpart of the

original Barbero-Immirzi parameter. Moreover the part I(+) + I(−) of the action in this

light qualifies to be at par with the topological (non-dynamical) term one adds with the

usual Hilbert-Palatini action in 3+1 dimensions, since this term we added (being equal
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to a Chern Simons action for space-times we consider) is also non-dynamical. But more

importantly the contrast is in the fact that the original action, which is dynamical in the

3+1 case is also non-dynamical here, when one considers local degrees of freedom only.

Another striking contrast between the original B-I parameter and the present one lies

in the fact that in the 3+1 scenario γ parameterizes canonical transformations in the

phase space of general relativity. From the canonical pair of the SU(2) triad (time gauge

fixed and on a spatial slice) and spin-connection one goes on finding an infinitely large

set of pairs parameterized by γ. The connection is actually affected by this canonical

transformation, and this whole set of parameterized connections is popularly known as

the Barbero-Immirzi connection. The fact that this parameter induces canonical trans-

formation can be checked by seeing that the symplectic structure remains invariant under

the transformation on-shell. On the other hand for the case at hand, ie 2+1 gravity,

as we will see in the following sub-section that inclusion of finite γ is not a canonical

transformation and it does not keep the symplectic structure invariant.

1.0.2 Symplectic Structure on the Covariant Phase Space

Consider a globally hyperbolic space-time manifold endowed neither with an internal nor

an asymptotic boundary and let it allow foliations 1 M ≡ Σ× R, with Σ being compact

and ∂Σ = 0.

In view of [43,44] the covariant phase space, ie the space of solutions of the equations

of motion the theory, is V(+)
F × V(−)

F , product of spaces of flat SO(2, 1) connections as

discussed in the last section. We now intend to find the pre-symplectic structure 2. For

1On-shell (1.3) implies the space-time can be given (pseudo) Riemannian structure. With respect to

the associated metric (0,2)-tensor and a time like vector field ta the manifold is assumed to be Cauchy-

foliated.
2It is being called the pre-symplectic structure since as we will point out later that only on the

constraint surfaces this has the property to be gauge invariant. When we have a phase space parameterized

by gauge invariant variables, this pre-symplectic structure will induce a symplectic structure on that.
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that purpose, we start with the Lagrangian 3-form that gives the action (1.10):

L = l (1/γ + 1)

(
A(+)I ∧ dA(+)

I +
1

3
εIJKA

(+)I ∧ A(+)J ∧ A(+)K

)
+ l (1/γ − 1)

(
A(−)I ∧ dA(−)

I +
1

3
εIJKA

(−)I ∧ A(−)J ∧ A(−)K

)
(1.12)

The standard variation gives on-shell:

δL =: dΘ(δ) = dΘ(+)(δ) + dΘ(−)(δ)

where

(16πG/l) Θ(±)(δ) = (1/γ ± 1) δA(±)I ∧ A(±)
I . (1.13)

The procedure of second variations [43,44] then gives the pre-symplectic current

J(δ1, δ2) = J (+)(δ1, δ2) + J (−)(δ1, δ2)

where J (±)(δ1, δ2) = 2δ[1Θ(±)(δ2])

which is a closed 2-form (dJ(δ1, δ2) = 0) on-shell. The closure of J and the fact that

we are considering space-time manifolds which allow closed Cauchy foliations imply that

the integral
∫

Σ
J(δ1, δ2) is actually foliation independent, ie independent of choice of Σ.

Hence the expression
∫

Σ
J(δ1, δ2) is manifestly covariant and qualifies as the pre-symplectic

structure on V(+)
F × V(−)

F . We thus define the pre-symplectic structure:

Ω = Ω(+) + Ω(−) (1.14)

where

Ω(±) (δ1, δ2) =

∫
Σ

J (±)(δ1, δ2)

=
k(±)

π

∫
Σ

δ1A
(±)I ∧ δ2A

(±)
I (1.15)

where the CS levels, k(±) = l(1/γ±1)
8G

, restoring G.

At this point we would like to note two important features of this symplectic structure,

in light of the comparison we have been doing with the Barbero-Immirzi modified phase

space of 3+1 gravity:
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• In the 3+1 case the extra contribution of the Holst term (with coeffecient 1/γ)in

the symplectic structure can be shown to vanish on-shell. Hence in that context,

it is clear that in the covariant phase space γ has the role of inducing canonical

transformations. On the other hand, in the present case, it is very much clear from

the above expression, that the γ dependent term cannot vanish, as suggested in the

previous subsection. So, what we have at hand are infinite inequivalent theories for

2+1 gravity each having different canonical structure and parameterized by different

values of γ at the classical level itself.

• The other point worth noticing is that Ω is indeed gauge invariant and it can be

checked by choosing one of the two δ s to produce infinitesimal SO(2, 1) gauge

transformations or infinitesimal diffeomorphisms and keeping the other arbitrary.

In both these cases Ω
(
δSO(2,1), δ

)
and Ω (δdiffeo, δ) vanish on the constraint surface,

recognizing these two classes of vectors in the covariant phase space as the ‘gauge’

directions.

1.0.3 Canonical Phase Space

From the above covariant symplectic structure one can instantly read off the following

canonical equal-time (functions designating the foliations as level surfaces) Poisson brack-

ets:

{A(±)I
i (x, t), A

(±)J
j (y, t)} =

1

2l(1/γ ± 1)
εijη

IJδ2 (x, y) (1.16)

where εij is the usual alternating symbol on Σ.

It is worthwhile to see the Poisson bracket structure in terms of Palatini variables:

{ωIi (x, t), eJj (y, t)} =
1

4

γ2

γ2 − 1
εijη

IJδ2 (x, y)

{ωIi (x, t), ωJj (y, t)} = −1

4

γ/l

γ2 − 1
εijη

IJδ2 (x, y) (1.17)

{eIi (x, t), eJj (y, t)} = −1

4

γl

γ2 − 1
εijη

IJδ2 (x, y)

As expected in the limit γ → ∞ the Poisson brackets reduce to those of usual Palatini
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theory:

{ωIi (x, t), eJj (y, t)} =
1

4
εijη

IJδ2 (x, y)

{ωIi (x, t), ωJj (y, t)} = 0 (1.18)

{eIi (x, t), eJj (y, t)} = 0

We here wish to concentrate on the Hamiltonian and the constraint structure of the

theory. In terms of the Chern Simons gauge fields these are the SO(2, 1) Gauss law

constraints as illustrated below. The Legendre transformation is done by space-time

splitting of the action I given by(1.10)

I = l(1/γ + 1)

∫
R
dt

∫
Σ

d2xεij
(
−A(+)I

i ∂0A
(+)
jI + 2A

(+)I
0 ∂iA

(+)
jI + εIJKA

(+)
0I A

(+)
iJ A

(+)
jK

)
+l(1/γ − 1)

∫
R
dt

∫
Σ

d2xεij
(
−A(−)I

i ∂0A
(−)
jI + 2A

(−)I
0 ∂iA

(−)
jI + εIJKA

(−)
0I A

(−)
iJ A

(−)
jK

)
(1.19)

First terms in the integrands are kinetic terms and from them one can again extract

(1.16). The Hamiltonian is given by

H = H(+) +H(−)

where

H(±) = l (1/γ ± 1) εij
(

2A
(±)I
0 ∂iA

(±)
jI + εIJKA

(±)
0I A

(±)
iJ A

(±)
jK

)
The fields A

(±)
0I are the Lagrange multipliers and we immediately have the primary con-

straints

G(±)
I = l (1/γ ± 1) εij

(
∂iA

(±)
jI +

1

2
εI
JKA

(±)
iJ A

(±)
jK

)
≈ 0 (1.20)

Since H(±) = A
(±)I
0 G(±)

I ≈ 0 the Hamiltonian is therefore weakly zero. Again the primary

constraint being proportional to the Hamiltonian, there are no more secondary constraints

in the theory, in Dirac’s terminology. Now consider the smeared constraint

G(±) (λ) =

∫
Σ

d2xλIG(±)
I

for some λ = λIJI ∈ so(2, 1) in the internal space. It now follows that these smeared

constraints close among themselves:

{G(±) (λ) ,G(±) (λ′)} = G(±) ([λ, λ′]) (1.21)
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and the SO(2, 1) Lie algebra is exactly implemented on the canonical phase space. Hence

clearly these are the ‘Gauss’ constraints generating SO(2, 1) gauge transformations sepa-

rately for the (+) type and the (−) type gauge fields. The closure of these constraints on

the other hand means that these are first class and there are no second class constraints. A

close look on (1.20) reveals that this constraint is nothing but vanishing of the gauge field

curvature (1.11) when pulled back to Σ. The temporal component A0I is non-dynamical,

being just a Lagrange multiplier. Hence all the dynamics of the theory determined by

(1.11) is constrained as (1.20). It follows immediately there is no local physical degree

of freedom in the theory. This is related to the justified recognition of Chern Simons

theories as ‘topological’. We now wish to probe in to the implications of this constraint

structure in the gravity side. These issues were discussed by various authors, e.g. [16] for

the theory which corresponds to the limit γ →∞ of our system.

We now carry out the Legendre transformation through the space-time split action

(1.19) in terms of the variables pertaining relevance to the gravity counterpart of the

theory as

I = −2l

∫
R
dt

∫
Σ

d2xεij
[
1/γ

(
ωIi ∂0ωjI +

1

l2
eIi ∂0ejI

)
+

2

l
ωIi ∂0ejI

]
︸ ︷︷ ︸

kinetic terms

+4l

∫
R
dt

∫
Σ

d2xεij

[
1

l

(
ωI0 +

1

γl
eI0

)(
∂iejI + εI

JKωiJejK
)

+

(
1

γ
ωI0 +

1

l
eI0

)(
∂iωjI +

1

2
εI
JK

(
ωiJωjK +

1

l2
eiJejK

))]
(1.22)

One then envisages the part save the kinetic part as the Hamiltonian with
(
ωI0 + 1

γl
eI0

)
,(

1
γ
ωI0 + 1

l
eI0

)
as the Lagrange multipliers with the following as the constraints, after suit-

able rescaling3:

P I := 2
1− γ2

γ2
εij
(
∂ie

I
j + εIJKω

J
i e

K
j

)
≈ 0

SI := 2
l(1− γ2)

γ2
εij
(
∂iω

I
j +

1

2
εIJK

(
ωJi ω

K
j +

1

l2
eJi e

K
j

))
≈ 0 (1.23)

3A rescaling with the factor 1−γ2

γ2 is done in order to avoid apparent divergences in the constraint

algebra at the points γ → ±1
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Let us define their smeared versions as

P (λ) :=

∫
Σ

d2xλIPI and S(λ) :=

∫
Σ

d2xλISI

for λ ∈ so(2, 1). One can also check the expected closure of the constraint algebra of S

and P which guarantees their first class nature:

{S(λ), S(λ′)} = γ−1S([λ, λ′])− P ([λ, λ′])

{S(λ), P (λ′)} = −S([λ, λ′]) + γ−1P ([λ, λ′]) (1.24)

{P (λ), P (λ′)} = γ−1S([λ, λ′])− P ([λ, λ′])

Since linear combinations of ωI0 and eI0 are Lagrange multipliers, these fields themselves are

non dynamical. We thus infer that all the dynamical informations through the equations

of motion (1.2), (1.3) are encoded in the constraints (1.23). In the limit γ → ∞, as

e.g. in [16] P generate local Lorentz ie, SO(2, 1) Lorentz transformations and S generate

diffeomorphisms for the frame variables. Since in finite γ case too these are first class,

one should expect them to generate some gauge transformation. To see changes brought

in by the modified symplectic structure we first compute the transformations induced by

these constraints:

{eIi (x, t), P (λ)} = − l
2

γ−1
(
∂iλ

I + εIJKωiJλK
)︸ ︷︷ ︸

DiλI

+
1

l
εIJKλJeiK

 (1.25)

{ωIi (x, t), P (λ)} =
1

2

[
Diλ

I +
1

lγ
εIJKλJe

K
i

]
, (1.26)

where Di defined above in the frame bundle covariant derivative induced by ωIi . The

infinitesimal local SO(2, 1) Lorentz transformations, ie e→ e+λ×e, ω → ω+dλ+λ×ω
are seen to be successfully generated by P (λ) in the limit γ → ∞. But for finite γ,

the transformations are deformed in a sense that infinitesimal diffeomorphisms are also

generated along with Lorentz transformations. Similarly the Lie transports generated

by the diffeomorphism generator S are also deformed due to the modified symplectic

structure as:

{eIi (x, t), S(λ)} =
l

2

[
Diλ

I +
1

lγ
εIJKeJiλ

K

]
(1.27)

{ωIi (x, t), S(λ)} = −1

2

[
γ−1Diλ

I +
1

l
εIJKλJe

K
i

]
(1.28)
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In this case we also notice that the usual diffeomorphism generator is generating local

Lorentz transformations for finite γ. We can find suitable linear combinations of these two

generators which separately generate local Lorentz transformation and diffeomorphisms.

The striking consequence of the γ-deformed Poisson algebra (1.17) can again be en-

visaged in terms of the usual ADM canonical pairs: the spatial metric hij and the dual

momentum πij =
√
h (Kij − hijK), where Kij is the extrinsic curvature and K is its

trace. Using hij = gij = eIi ejI , we have:

{hij(x, t), hkl(y, t)} = −1

4

γ

γ2 − 1
(εikhjl + εilhjk + εjkhil + εjlhik) δ

2(x, y).

Similar Poisson brackets involving πij can also be calculated, which are more cumbersome

and we omit their explicit forms. The take-home message from this analysis is that, while

the spatial metric Poisson commute with itself in the limit γ → ∞, it fails to do so for

finite γ. In contrast to the 3+1 dimensional case, therefore, γ does not induce canonical

transformation in the ADM phase space.

1.0.4 The Singularity and its Resolution at γ → 1

As it is apparent from (1.16), (1.17) the canonical structure blows up at the point γ → ±1.

This is due to the fact that the Lagrangian (1.12) and the action functional (1.10) become

independent of either of the 1-form fields A(±) for γ → ±1. As a result the symplectic

structure we have constructed (1.14), becomes degenerate on the space V(+)
F ×V

(−)
F (leaving

the gauge degeneracies apart), resulting it to be non-invertible. This is clearly the reason

for blowing up of the equal time Poisson brackets (1.16).

In order to avoid this singularity we restrict our theory to γ ∈ {R+−{1}} and propose

the theory (1.10) for gravity in 2+1 dimensions. We will see further restriction on the

values of γ allowed by the quantum theory. The borderline case γ = 1 can however be

dealt as follows. At the point γ = 1 the effective theory of 2+1 gravity, as recovered from

(1.10) easily, is described by the single gauge 1-form A
(+)
I and we consider the phase space

to be only coordinatized by flat connections A
(+)
I , ie V(+)

F with the action functional:

I = l

∫
M

(
A(+)I ∧ dA(+)

I +
1

3
εIJKA

(+)I ∧ A(+)J ∧ A(+)K

)
(1.29)
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On the space V(+)
F we now have the symplectic structure

Ω (δ1, δ2) = 2l

∫
Σ

δ[1A
(+)I ∧ δ2]A

(+)
I (1.30)

This gives the non-singular Poisson bracket:

{A(+)I
i (x, t), A

(+)J
j (y, t)} =

1

2l
εijη

IJδ2 (x, y) (1.31)

In a more generalized theory, such as cosmological topologically massive gravity (CTMG)

dealt in the first order formalism [45–47] one deals with the action

ICTMG = l
[
(1/γ + 1) I(+) + (1/γ − 1) I(−) + %I ∧

(
deI + εIJKe

J ∧ ωK
)]

= l

[
(1/γ + 1) I(+) + (1/γ − 1) I(−) +

1

4l

∫
M

%I ∧
(
dA

(+)
I + εIJKA

(+)J ∧ A(+)K
)

− 1

4l

∫
M

%I ∧
(
dA

(−)
I + εIJKA

(−)J ∧ A(−)K
)]

(1.32)

where % is a new 1-form field which enhances the covariant phase space and emerges as a

Lagrange multiplier. The corresponding symplectic structure is

ΩCTMG (δ1, δ2) = 2l

[
(1/γ + 1)

∫
Σ

δ1A
(+)I ∧ δ2A

(+)
I

+ (1/γ − 1)

∫
Σ

δ1A
(−)I ∧ δ2A

(−)
I −

1

2l

∫
Σ

(
δ[1ρ

I ∧ δ2]A
(+)
)

+
1

2l

∫
Σ

(
δ[1ρ

I ∧ δ2]A
(−)
) ]

(1.33)

In contrast to the theory we have considered, this theory does not become independent

of any of the dynamical variables
(
A(−), A(+), %

)
as γ → 1:

ICTMG

∣∣∣∣
γ=1

= l

[
2I(+) +

1

4l

∫
M

%I ∧
(
dA

(+)
I + εIJKA

(+)J ∧ A(+)K
)

− 1

4l

∫
M

%I ∧
(
dA

(−)
I + εIJKA

(−)J ∧ A(−)K
)]

(1.34)

and in this limit γ → 1 the symplectic structure (1.33) remains non-degenerate:

ΩCTMG

∣∣∣∣
γ=1

(δ1, δ2) = 2l

[
2

∫
Σ

δ1A
(+)I ∧ δ2A

(+)
I −

1

2l

∫
Σ

(
δ[1ρ

I ∧ δ2]A
(+)
)

+
1

2l

∫
Σ

(
δ[1ρ

I ∧ δ2]A
(−)
) ]

(1.35)
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On the other hand there is a price one has to pay for considering TMGs [2, 48, 49] in

general. The theory develops a local propagating degree of freedom (graviton) and the

complete non-perturbative quantization (as we present in the next section) seems far from

being a plausible aim. Progress in perturbative quantization about linearized modes in

TMG although have been made in [50]. Also the relevance of the limit γ → 1 in the

context of chiral gravity was made clear there.

Topologically massive gravity has so far been talked about in the first order framework

only. It is however interesting to learn about the second order version of it. To see this

one first solves the torsionless part of the equation of motion (1.2) for e(ω). The next

part is to substitute it in the action (1.10) and use eIµeIν = gµν . Then the new action

becomes original Einstein-Hilbert plus a ’gravitational Chern Simons’ term. Surprisingly,

now this total action is no more topological and has propagating degrees of freedom. We

will be talking about other features of TMG in the quantum perspective later.



Chapter 2

2+1 Quantum Gravity on Toric Spatial Foliation

2.1 Introduction

As promised in 0.3.2, we here take the opportunity to discuss the relationship between

Chern Simons theory and 3D gravity at the level of quantum dynamics, in greater detail.

Quantum gravity in 2+1 dimensions have been an object of serious research for quite

some time. From our previous discussion, we understand that being equivalent to a

Chern Simons topological gauge theory, there is no propagating mode in this theory

[51]. However it admits of a CFT at the boundary when the theory is considered in an

asymptotically AdS space-time [19]. Gravity in 2+1 space-time even without graviton

modes took an intresting turn after existence of black hole solutions was ensured [18].

Subsequent important works in the context of AdS/CFT correspondence [52,53] warrants

the importance of this model.

Even if one restricts oneself with 2+1 gravity models without propagating degrees of

freedom, quantization of the theory poses a non-trivial problem in its own right in the

sense that one has to study this problem keeping in mind that topology of the space-time

would play an important role. We would be working with non-perturbative canonical

quantization. In that case, if the phase space is finite dimensional one can do away with

problems regarding renormalizability even in the non-perturbative regime [16,20]. In this

work we would deal with 2+1 gravity on a (pseudo)Riemann-Cartan manifold which is

not asymptotically AdS and aim to compare results with asymptotically AdS calculations

already available in literature.

26
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As discussed in the chapter 1, in the case of negative cosmological constant the Chern-

Simons action corresponding to 2+1 gravity (hereafter referred as CSG) can be written as

an SO(2, 1)×SO(2, 1) gauge theory [16], which is purely topological as opposed to TMGs.

For the specific type of topology of space-time, that we will be choosing, the topology

of the physical phase space of the theory will become nontrivial and one has to take

recourse to geometric quantization [54]. This approach of quantization in the ‘constrain

first’ line was studied for an SL(2,R) Chern-Simons theory with rational charges in [55]

where a finite dimensional Hilbert space was constructed on the almost torus part of

the physical phase space and it was argued that the Hilbert space on the total phase

space would be finite dimensional. Spatial slice in this case was chosen to be a torus.

We must admit, the choice of the spatial slice being a compact Riemann surface stems

from a desire to construct a finite dimensional Hilbert space of states, which was still

unexplored in literature. Our work presented in this chapter is particularly motivated

from [55]. Since we are dealing with a theory with non-compact gauge group, we fail to

observe the ‘shift’ in the CS level [56]. We now note the connection of CS theory with

Wess-Zumino-Witten(WZW) conformal field theory [57]. In this view, the central charge

of the current algebra of the WZW also should miss the corresponding shift. Inspite of

that, as explained in [55] the above difficulty is overcome as the Hilbert space of quantum

states of we will be having, will enjoy exactly the same unitary structure of the vector

space of the current blocks of the WZW theory. One can however consider physically

more interesting topologies giving rise to asymptotically AdS ones. A non-perturbative

quantization in this regard can be proposed following [56], based on loop-group moduli

space formulation. However in a more modern light of holographic interpretation, the

required states can be more easily read out from the asymptotic CFT [20].

As warned earlier, the equivalence of gravity with Chern Simons has to be taken

with a grain of salt, particularly following the caveat presented relatively recently by

Witten [20]. For example, in the Chern Simons side, one has flat connections which

are trivially zero. But once one makes contact with gravity variables, these give triads

(as well as frame connections) trivially zero and hence non-invertible (they do not give

rise to physically meaningful metrics). Naturally the question around viability of a non-

perturbative quantum theory, which should include all smooth classical solutions from
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Chern Simons as well as frame variables, is not quite answered.

We also wish to point out that in a later work [58], an explicit parameterization of the

physical phase space for CS gravity on toric spatial foliation and negative cosmological

constant was done. There, in contrast to geometric quantization, the phase space was

modified to a suitable cotangent bundle by a surgery of the non-trivial phase space and

trivializing its topology. Conventional procedure of canonical quantization was carried

out in that modified phase space. Also no comment on the dimensionality of the Hilbert

space was made.

With most of the classical dynamical analysis already done in chapter 1, we directly

go into constructing the physical phase space of theory in section 2.2. While doing so, we

keep in mind that the physical (gauge moduli) space actually depends on the topology of

the spatial slice of the 3D manifold M initially chosen. In our case, as mentioned earlier,

it is genus-1 Riemann surface initially with no other additional structures. The physical

phase space is the moduli space of flat gauge connections, modulo gauge transformations

on our choice of spatial foliation. The topology of the moduli space turns out to be a

torus punctured at a point (may be chosen to be origin) with a plane also punctured at

a point (also chosen to be origin of the plane) and glued to the torus through a closed

curve (S1) around the origin (common puncture) the plane being Z2 folded through the

origin .

In section 2.3 we discuss the geometric quantization of the phase space [54]. A complete

basis for the physical Hilbert space is constructed in terms of theta functions. Note

that due to introduction of this new parameter, both the Chern-Simons levels can be

adjusted to be positive and rational. During quantization this becomes important since

the dimensionality of the Hilbert space of the quantized theory is directly related with

these levels. The corresponding charge in the CSG is no longer an integer owing to the

fact that the Weil’s integrality condition on the Chern-Simons charge disappears as a

consequence of the non compactness of the gauge group which in our case is SO(2, 1) [3],

[56]. A discussion on the restrictions on physical parameters coming from the quantization

is also presented and compared with those from [20].

In this chapter we will be discussing the analysis presented in the paper [26]. However

unit conventions used in this thesis is different from the paper.
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2.2 The Physical Phase space for Σ = T 2

The classical phase space, with all redundant (gauge) degrees of freedom was described

in chapter 1. While constructing the physical phase space, we closely follow the analysis

of [55] and present the internal details of the construction.

2.2.1 The physical phase space

The route we choose for quantization of the system involves eliminating the gauge redun-

dancy inherent in the theory, ie, finding the solution space modulo gauge transformations,

in the classical level itself. For the present purpose this approach is useful in contrast to

the other one which involves quantizing all degrees of freedom and then singling out the

physical state space as the solution of the equation:

M̂|Ψ〉 = 0

ie, the kernel of the quantum version of the constraints. For illustrations of this later

path one may look up the context of quantization of diffeomorphism invariant theories of

connections [59], eg, loop quantum gravity in 3+1 dimensions [60].

The advantage of the first approach, ie, the reduced phase space (constrained first) one

is that the phase space is completely coordinatized by gauge invariant objects; another

manifestation being its finite dimensionality. Quantization of a finite dimensional phase

space may acquire non-triviality only through the topology of it, as will be illustrated in

the case at hand.

Now, the physical phase space is clearly(
V(+)
F / ∼

)
×
(
V(−)
F / ∼

)
,

where ∼ means equivalence of two flat connections which are gauge related. It is thus

understood [16] that at least for the case when Σ is compact, each of the V(±)
F / ∼ spaces is

topologically isomorphic to the space (hom : π1(Σ)→ SO(2, 1)) / ∼) of homomorphisms

from the first homotopy group of Σ to the gauge group modulo gauge transformations.

This isomorphism is realized (parameterized) by the holonomies of the flat connections

around non-contractible loops on Σ which serve as the homomorphism maps.
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For the choice of the topology of compact Σ, one may start by choosing a general

g-genus Riemann surface. The case g = 0 is trivial, and the moduli space consists of

two points. For g ≥ 2, parametrization of the phase space is highly non-trivial and

topology of it is still not clear in literature, although construction of canonical structure on

those moduli spaces have been constructed [61]. As the first non-trivial case we therefore

choose the case when Σ is a genus 1 Riemann surface T 2. For this torus, we know that

π1(T 2) = Z⊕Z i.e. this group is freely generated by two abelian generators α and β with

the relation

α ◦ β = β ◦ α. (2.1)

Since the connections at hand are flat, their holonomies depend only upon the homotopy

class of the curve over which the holonomy is defined. For this reason, as parameterizations

of the V(±)
F we choose the holonomies

h(±)[α] := P exp

(∫
α

A(±)

)
and h(±)[β] := P exp

(∫
β

A(±)

)
1with (2.1) being implemented on these SO(2, 1) group valued holonomies as

h(±)[α]h(±)[β] = h(±)[β]h(±)[α]. (2.2)

As is well-known these are gauge covariant objects although their traces, the Wilson loops

are gauge invariant. Although the classical Poisson bracket algebra of Wilson loops for

arbitrary genus were exhaustively studied in [61], the phase space these loops constitute

is absent. On the other hand there is another simple way of finding the gauge invariant

space especially for the case of genus 1, as outlined in [55, 58]. We will for completeness

briefly give the arguments reaching the construction.

Under the gauge transformations A(±) → ˜A(±) = g−1
(
A(±) + d

)
g the holonomies

transform as h(±)[c] → h̃(±)[c] = χ−1h(±)[c]χ for any closed curve c and some element

χ ∈ SL(2,R).

Again from (2.25) we know that any SO(2, 1) element is conjugate to elements in any

of the abelian subgroups: fφ or gξ or hη. Out of the three cases, for illustrative purpose

we present the elliptic case.

1here the path ordering P means ordering fields with smaller parameter of the path to the left
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Let h(±)[α] is conjugate to an element in the elliptic class. Up to proper conjugation

we can write

h(±)[α] = e−λ0ρ(±)

and from the discussion of 2.4 with (2.2) we must have that

h(±)[β] = e−λ0σ(±) .

Hence we have ρ(±) and σ(±) with range (0, 2π) parameterizing a sector of the gauge

invariant phase space with topology of a torus : S1 × S1 ' T 2.

Similarly structures of the other two sectors can also be found out. One is (R2\{0, 0}) /Z2,

containing an orbifold singularity and another is S1 topologically. The total phase space

is therefore product of two identical copies of T 2∪(R2\{0, 0}) /Z2∪S1. To be more precise

the total phase space can be thought of as a union of a punctured torus T̃ , the punctured

orbifold (R2\{0, 0}) /Z2 named as P̃ glued together at the repsective punctures through

the circle S1, identifying the S1 as a point.

2.2.2 Symplectic structure on the phase space

If one considers periodic coordinates x, y on Σ ' T 2 with period 1, then it follows imme-

diately that the connections

A(±) = λ0(ρ(±)dx+ σ(±)dy) (2.3)

give the above written holonomies parameterizing the T̃ sector.

Now using (1.14) and (4.4) we have the symplectic structure ω, whose pull back to

the pre-symplectic manifold is Ω (1.14) on this T̃ sector of the phase space is given by

(we have restored G at this point):

ω (δ1, δ2) =
l

16πG

[
(1/γ + 1) δ[1ρ(+)δ2]σ(+) + (1/γ − 1) δ[1ρ(−)δ2]σ(−)

]
(2.4)

or,

ω =
l

16πG

[
(1/γ + 1) dρ(+) ∧ dσ(+) + (1/γ − 1) dρ(−)∧dσ(−)

]
=

k(+)

2π
dρ(+) ∧ dσ(+) +

k(−)

2π
dρ(−) ∧ dσ(−) (2.5)
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where k(±) = l(1/γ±1)
8G

and the d are exterior differentials on the phase and the ∧ is also

on this manifold, not on space time. Here we introduce holomorphic coordinates on T̃

corresponding to a complex structure τ on the two dimensional space manifold Σ as

z(±) =
1

π

(
ρ(±) + τσ(±)

)
.

Then the symplectic structure in (2.5) takes the form

ω =
ik(+)π

4τ2

dz(+) ∧ dz̄(+) +
ik(−)π

4τ2

dz(−) ∧ dz̄(−) (2.6)

In a similar fashion the symplectic structure on P̃ is given by:

ω =
ik(+)π

4τ2

dz(+) ∧ dz̄(+) +
ik(−)π

4τ2

dz(−) ∧ dz̄(−) (2.7)

where z(±) = 1
π

(
x(±) + τy(±)

)
, x, y being the coordinates on P̃ .

2.3 Geometric quantization of the phase space

As explained in 2.2.1 the total phase space is product of two identical copies of T̃ ∪ P̃ , T̃

and P̃ being glued through a circle S1 around the puncture at (0, 0). Variables relevant

to each factor of this product has been distinguished until now by ± suffices. From now

on, we will remove this distinction for notational convenience and will restore when it is

necessary.

Upon quantization the total wave functions (holomorphic sections of the line bundle

over T̃ ∪ P̃ ) should be such that the wave function (holomorphic sections of the line

bundle over T̃ ∪ P̃ ) on T̃ , say ψ(z) and the wave function on P̃ , say χ(z) should ‘match’

on the circle. The plan of quantization is therefore simple. We will first carry out the

quantization on T̃ . Then we will consider those functions on P̃ which can be found by

continuation in some sense of the wave functions on T̃ .

Note that as we will be developing the quantum theory in this chapter, the Planck

constant would evidently arise and we will be using the natural units, in which ~ = 1.

The first appearance of it will be kept note of.
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2.3.1 Quantization on T̃

While performing quantization on T̃ with the symplectic structure

ω =
k

2π
dρ ∧ dσ =

ikπ

4τ2

dz ∧ dz̄

one must keep in mind the fact that T̃ is in fact punctured as opposed to being com-

pact. 2 The distinction occurs from the non triviality of the algebra of the generators

of the homotopy group. The three generators of π1(T̃ ), denoted as a, b,&∆ respectively

correspond to the usual cycles of the compact torus and the cycle winding around the

puncture. They should satisfy the following relations:

aba−1b−1 = ∆ a∆a−1∆−1 = 1 b∆b−1∆−1 = 1

As explained in [55, 62] q ∈ Z dimensional unitary representation of these relations are

given as follows. The unitary finite dimensional non-trivial representations of this algebra

must have the commuting generator δ proportional to identity. Hence we have the for

some q dimensional representation

∆α,β = e2πip/qδα,β

where p, q are positive integers, co prime to each other. Reason behind choosing rational

phase will become clear shortly when we complete the quantization.

Again, up to arbitrary U(1) phase factor a, b are represented as

aα,β = e−2πi p
q
αδα,β bα,β = δα,β+1

with α, β ∈ Zq. It is also being expected that the space of holomorphic sections should

also carry the q representation of this homotopy group.

Let us now consider quantization on R2 endowed with complex structure τ and the

above symplectic structure. The fact that the actual phase space we wish to quantize

is a punctured torus will be taken into account by action of the discretized Heisenberg

2Had the symplectic manifold T̃ ∪ P̃ been compact, Weil’s integrality criterion would require the

Chern-Simons level k to be integer valued. At this point we keep open the possibility of k being any real

number.
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group operators on the Hilbert space of parallel sections of the line bundle over R2. A

very similar quantization scheme for a different situation may be found in [63–65].

We start from the symplectic structure on R2 instead of the the punctured torus T̃ and

coordinatize it by ρ and σ and endowed with complex structure τ , such that holomorphic

anti holomorphic coordinates are chosen as before:

ω =
k

2π
dρ ∧ dσ.

With definition of holomorphic coordinate z = 1
π
(ρ+ τσ) defined through arbitrary com-

plex structure τ this becomes

ω =
ikπ

4τ2

dz ∧ dz̄,

where τ2 = =τ. It is easy to check that the symplectic potential

Θ =
ikπ

8τ2

[− (z̄ − 2z) dz + (z + ξ(z̄)) dz̄]

gives the above symplectic structure, for arbitrary anti-holomorphic function ξ(z̄). Let us

now consider the hamiltonian vector fields corresponding to the variables ρ and σ

ζρ =
2π

k
∂σ (2.8)

ζσ = −2π

k
∂ρ (2.9)

The corresponding pre-quantum operators to these variables are therefore

ρ̂ = −iζρ −Θ(ζρ) + ρ

= −2i

k
(τ∂z + τ̄ ∂z̄) +

iπ

4τ2

(τ̄ z − τ z̄ − 2τz − τ̄ ξ(z̄)) (2.10)

σ̂ = −iζσ −Θ(ζσ) + σ

= −2i

k
(∂z + ∂z̄) +

iπ

4τ2

(z + z̄ + ξ(z̄)) (2.11)

Now, parallel (holomorphic) sections of the line bundle π : LT̃ → T̃ over the symplectic

manifold T̃ are classified through the kernel of the Cauchy-Riemann operator defined via

the connection ∇ = d− iΘ on LT̃ as (in units of ~=1)

∇∂z̄Ψ(z, z̄) = 0. (2.12)
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Ansätz for Ψ can be chosen as:

Ψ(z, z̄) = e
− kπ

8τ2
(zz̄+Ξ(z̄))

ψ(z) (2.13)

with Ξ(z̄) being the primitive of ξ(z̄) with respect to z̄ and ψ(z) is any holomorphic

function. This is how the holomorphic factor ψ(z) of the function Ψ(z) is being singled

out by the ∇∂z̄ . To find the representations of the operators corresponding to σ̂ and ρ̂ on

the space of the holomorphic functions, we see the actions:

ρ̂Ψ(z, z̄) = e
− kπ

8τ2
(zz̄+Ξ(z̄))

[
−2i

k
τ∂z + πz

]
ψ(z)

=: e
− kπ

8τ2
(zz̄+Ξ(z̄))

ρ̂′ψ(z) (2.14)

σ̂Ψ(z, z̄) = e
− kπ

8τ2
(zz̄+Ξ(z̄))

[
2i

k
∂z

]
ψ(z)

=: e
− kπ

8τ2
(zz̄+Ξ(z̄))

σ̂′ψ(z). (2.15)

These give the representations for σ and ρ on the space of holomorphic sections in terms

of ρ̂′ and σ̂′.

At this point it is necessary to notice that we aim to quantize the punctured torus

instead of R2. This is done by imposing periodicity conditions (for being defined on

torus) through action of the Heisenberg group and the homotopy group (accounting for

the puncture) on the space of holomorphic sections. Let us therefore define homotopy

matrix-valued Heisenberg operators:

U(m) := bmeikmρ̂
′

(2.16)

V (m) := ame−ikmσ̂
′

(2.17)

The periodicity condition that,

U(m)V (n)ψ(z) = ψ(z)

for m,n ∈ Z therefore reduces to

ψ(z + 2m+ 2nτ) = e−ikn
2πτ−iknπza−mb−nψ(z) or

ψα(z + 2m+ 2nτ) = e−ikn
2πτ−iknπz+2πi(p/q)mαψα+n(z). (2.18)
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in terms of components.

Let us now as a digression concentrate upon level I, J SU(2) theta functions

ϑI,J(τ, z) :=
∑
j∈Z

exp

[
2πiJτ

(
j +

I

2J

)2

+ 2πiJz

(
j +

I

2J

)]

and define

ϑ̃α,N(τ, z) := ϑqN+pα,pq/2(τ, z/q)

for pq even [55]. After some manipulations, it is easy to check that

ϑ̃α,N(τ, z + 2m+ 2nτ) = e−πi(p/q)n
2τ−πi(p/q)nze2πi(p/q)mαϑ̃α+n,N(τ, z) (2.19)

the indices α ∈ {0, 1, . . . , q − 1} and N ∈ {0, 1, . . . , p − 1}. These theta functions are

known to form a complete p dimensional set over the field of complex numbers [66].

Again comparing the transformations (2.18) and (2.19) we infer that for the value

k = p/q, 3 a positive rational, we have a finite p dimensional vector space of physical

states spanned by q component wave-functions, represented by theta functions depicted

as above. For instance the N th wave function is

ψN(z) =


ϑ̃0,N(τ, z)

...

...

ϑ̃q−1,N(τ, z)

 .

Here we have only considered the case pq even. In spirit the case pq odd [55]can also

be dealt at par. Distinction of that case from the present one occurs as identification of

the wave functions satisfying (2.18) has to be made with a theta functions with different

levels.

We are considering k = p/q, a positive rational. From our earlier discussions (2.5), we

had k(±) = l(1/γ±1)
8G

(in the units of ~ = 1 = c, and in 2+1 space time dimensions G is of

3From another point of view it can be seen that the monodromy of wave functions about the puncture

satisfying the above relation is measured to be e2πik. When this is related related with the measure of

non-commutativity e2πip/q of the homotopy generators due to the puncture [55] we have the relation:

k = p/q

up to additive integers.
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dimension that of length, hence making k dimensionless) in terms of the parameters of

the classical theory. From the point of view of quantization, we are restricting only those

values of classical parameters for which the combinations k(±) are positive rational.

2.3.2 Continuation to P̃

The wave function χ(z) on P̃ must be of the form

χ(z) = zκφ(z)

where φ(z) is holomorphic and κ is a positive rational. The factor zκ in the wave function

is necessary since it must be allowed to pick up a non-trivial phase in going around the

orbifold singularity.

Also the wave function on the entire phase space should be such that the two functions

ψ and χ agree on the intersection and the wave function ψ(z) on T̃ should uniquely

determine that on P̃ in a neighbourhood of the intersection. Hence χ(z) must take the

following form around the origin.

χαN(z) = e
2πiαr
q z

r
qφαN(z) (2.20)

In the above equation we have chosen κ = r
q

keeping in mind that χαN(z) should have

exactly q number of branches. This is necessary for agreement of ψ and χ around the

puncture. z
r
q in (2.20) is the principal branch of zκ.

Again since P̃ ≡ (R2\0, 0)/Z2, the wave functions defined on it must have definite

‘parity’ since this results into a constant phase factor in the wave function. As a result

φαN(z) must be even or odd. This property must hold for the wave functions on T̃ in

order that the wave functions agree on a circle around the origin. For example in the

case pq even [55] we construct from (2.19) wave functions with definite parity through the

combination:

ψ
α(±)
N (τ, z) = ϑ̃α,N(τ, z)± ϑ̃−α,−N(τ, z) (2.21)

Now in order to match the wave-functions, we have to do Laurent expansion around

the origin. Laurent expansion about a point say P+ on a torus was studied in [67]. It was
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shown that there exists a basis on Cη which is anlogous to the basis zn on a circle, where

Cη parametrizes a compact Riemann surface in same way as a circle can parametrizes the

extended complex plane, η being a well defined global parameter that labels the curve

Cη = {Q : <[p(Q)]} = η, p(Q) =
∫ Q
Q0
dp , dp on the other hand is a differential of third kind

on the Riemann surface with poles of the first order at the points P± with residues ±1.

In the case of a torus an exact basis An(z) on Cη is given in [67]. These are the Laurent

basis for curves on the torus on a special system of contours Cη . As η → ±∞, Cη are

small circles enveloping the point , P∓ . We have to match the wave function on the the

torus around a small circle about P+ with that on P̃ . We could have expanded of ψ(z) in

terms of the basis An(z) while for the latter we can expand χ(z) in terms of zn. The two

expressions must be equal, when an expansion of the basis An(z) is performed in terms of

zn. Since ψ
α(±)
N (τ, z) is holomorphic we have the Laurent expansion for φ

α(±)
N (τ, z), (which

is related to χ
α(±)
N (τ, z) through (2.20)) around the origin as follows:

φ
α(±)
N (τ, z) = 1 +

[
u2

2!
(πipq)−1 ∂τ +

u4

4!
(πipq)−2 ∂2

τ + · · ·
]
×
∑
j

(
eπipqτx

2
j ± eπipqτx̃

2
j

)
+

[
u+

u3

3!
(πipq)−1 ∂τ +

u5

5!
(πipq)−2 ∂2

τ + · · ·
]
×
∑
j

(
xje

πipqτx2
j ± x̃jeπipqτx̃

2
j

)
(2.22)

with u = iπpz and xj = j + qN+pα
pq

and x̃j = j − qN+pα
pq

. φαN in the wave function (2.20)

should have the same form as above (2.22). This does not determine the exact form of

the above function on the entire P̃ . But this asymptotic form on P̃ ensures the finite

number p of the wave functions each with q components.

Hence we have at hand the full Hilbert space of the quantized theory. Dimension of

the Hilbert space is p(+)p(−). The extensions determined by the above asymptotic form

should also be ‘square integrable’ with respect to some well-defined measure dµP̃ . The

unitarily invariant, polarization independent inner product associated with this Hilbert

space of wave functions (to be more precise ‘half-densities’) is given in temrs of the Kähler

potential on T̃ corresponding to (2.6) or (2.13) and measure dµP̃ on P̃ is given as:

〈Ψ,Ψ′〉 =

∫
T̃

∑
α

dzdz̄τ
−1/2
2 e

− kπ
8τ2

(2zz̄+Ξ(z)+Ξ(z̄))
ψ′α(z)ψα(z̄) +

∫
P̃

∑
α

dµP̃χ
′
α(z)χα(z̄)
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2.3.3 γ → 1 limit in quantum theory

Brown and Henneaux [19], way back in ’86 showed that asymptotic symmetries asymptot-

ically AdS manifolds, which are of course solutions of 2 + 1 gravity with negative cosmo-

logical constant (not necessarily the BTZ solution), is given by a pair of Witt algebras- the

deformation algebra of S1 instead of the expected isometry SO(2, 2) of AdS3. Canonical

phase space realization of these asymptotic symmetries however are given by a pair of

Virasoro algebras, which are centrally extended versions of the symmetry algebra. Later

various authors [32] for example, reproduced the result with equivalent theories of (1.4) or

toplogically massive gravity (TMG) [46,68,69] confirming an AdS(3)/CFT(2) correspon-

dence, although with unequal central charges. In the theory we are dealing with, these

central charges come out to be
(
c(+), c(−)

)
= 3l

2G

((
1 + 1

γ

)
,
(

1− 1
γ

))
in our conventions

and notations.

The chiral limit ie γ → 1 in this direction has gained importance in recent literature for

various reasons. In view of results from [50], where second order TMG was studied on an

asymptotically AdS spacetime, we see that in order to make sense of all the graviton modes

γ should be restricted to 1. At this limit the theory becomes chiral with
(
c(+), c(−)

)
=(

3l
G
, 0
)
. Another interesting result by Grumiller et al [70] reveals that at the quantum

level chiral limit of TMG is good candidate as a dual to a logarithmic CFT (LCFT)

with central charges
(
c(+), c(−)

)
=
(

3l
G
, 0
)
. More recent works with some of the interesting

ramifications of TMG ‘new massive gravity’ [48] shows similar progress [71]. These results

were worked out on an asymptotically AdS space-time. In the present case however, we

have considered spatial slice to be a genus 1 compact Riemann surface, without boundary.

Hence chance of a CFT living at the boundary doesn’t arise. Even if we had worked on

a asymptotically AdS manifold, the theory would not be dual to an LCFT, because for

that a propagating degree of freedom is necessary, which is absent in our case.

However there are some interesting issues in the present discussion for the limit γ → 1:

We have inferred in 2.3.1 from (2.5),(2.18) and (2.19) k(±) = l
8G

(1/γ±1), which are related

to above discussed central charges through k(±) = ± 1
12
c(±) must be positive rationals. As

a result, if the ratio of the AdS radius l and and Planck length G (in units of ~ = 1 = c) is

positive, we must restrict 0 < γ < 1. This is in apparent contradiction to the restriction
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γ ≥ 1 [72] put by the CFT (living in the boundar, in the case of asymptotically AdS

formulation). But this may well be resolved from the point of view that our analysis is

completely performed on spacetime topology (as seen clearly in the construction of the

physical phase space) whose spatial foliations are compact tori and relevant ranges of

γ should depend non-trivially on the topology of spacetime and in our case restrictions

coming from suitable CFT is not clear as explained in next paragraph.

As argued in 1.0.4 at the point γ = 1, we describe 2+1 gravity with negative cosmolog-

ical constant through a single SO(2, 1) Chern Simons action (1.29). On the other hand,

for a rational SO(2, 1) (or any of its covers) Chern Simons theories on genus-1 spatial fo-

liation, existence of a dual CFT too is still not very clear, as argued in [55]. The modular

transformation (SL(2,Z)) representations acting on the physical hilbert space (as found

in 2.3.1, 2.3.2) appaear to be one of the two factors in to which modular representations of

the conformal minimal models factorize. This observation points that a 2-D dual theory

may not be conformal, although one may identify conformal blocks (of a CFT, if it exists)

labelling our wavefunctions [55].

2.3.4 Results on the quantization of parameters

We have explained in section 2.3.1 that k(±) =
p(±)

q(±)
are positive rationals. In [20] it has

been shown that for the gauge group being an n-fold diagonal cover of SO(2, 1)×SO(2, 1)

, one requires the couplings

k(+) ∈ 8n−1Z for n odd

k(+) ∈ 4n−1Z for n even and

k(+) + k(−) ∈ 8Z (2.23)

in our notation and convention. This is in agreement with our finding that the consistent

quantization procedure reveals k(±) =
p(±)

q(±)
∈ Q+ and we are considering q(±) covers of the

phase space (see section 2.3.2) which is constructed from the gauge group. In terms of
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physical parameters we have

l

G
∈ Q+ and

l

Gγ
∈ Q+

⇒ γ ∈ Q+ (2.24)

which are slightly less restrictive than the results of the analysis done in [20] l
G
∈ Q+ and

l
Gγ
∈ N ⊂ Q+.

2.4 Conclusion

The features which come out of our analysis can be summarized as follows.

Classically it is observed that γ fails to induce canonical transformations on the canon-

ical variables although equations of motion do not involve γ. The role of γ is best viewed

in the constraint strucure of the theory which is also studied in detail. On the other hand

the ‘chiral’ limit relevant in our case is γ → 1+ as opposed to the TMGs on asymptotically

AdS space times, where it is γ → 1−. In the canonical structure the apparent singularity

can also be removed as discussed in 1.0.4.

Natuarally different values of γ results in inequivalent quantizations of the theory.

Dimensionless γ and the cosmological constant − 1
l2

give the dimensionality of the physical

state space in a subtle manner. Note that we had k(+)k(−) = l2 1/γ2−1
64G2 , k(±) =

p(±)

q(±)
, p(±)

and q(±) being both positive integers and prime to each other. Dimension of the Hilbert

space turns out to be p(+)p(−) which must be a positive integer .This requirement, provides

allowed values of γ, for a given l
8G

such that l
8G
∈ Q+ and l

8Gγ
∈ Q+ .

Appendix : Conjugacy classes of SL(2,R)

Any SL(2,R) (which is the double cover of SO(2, 1)4) element G can be written in its

defining representation as the product of three matrices by the Iwasawa decomposition

4Since from gravity action we got a gauge theory with a lie algebra shared commonly by SO(2, 1),

SL(2,R), SU(1, 1) or any covering of them, the actual group used is quite irrelevant unless one is con-

sidering transformations between disconnected components of the group manifold.



Chapter 2. 2+1 Quantum Gravity on Toric Spatial Foliation 42

uniquely

G =

(
cos(φ/2) sin(φ/2)

− sin(φ/2) cos(φ/2)

)
︸ ︷︷ ︸

fφ

(
eξ/2 0

0 eξ/2

)
︸ ︷︷ ︸

gξ

(
1 η

0 1

)
︸ ︷︷ ︸

hη

(2.25)

with the range of φ being compact (−2π, 2π) and those of ξ and η noncompact. Note that

these three matrices fall in respectively the elliptic, hyperbolic and the null or parabolic

conjugacy class of SL(2,R), in addition to forming three abelian subgroups themselves.

Also note that

fφ = exp (iσ2φ/2) = e−λ0φ

gξ = exp (σ3ξ/2) = eλ2ξ

hη = exp [(iσ2 + σ1)η/2] = e(−λ0−λ1)η

where λI ∈ sl(2,R) with [λI , λJ ] = εIJKλ
K .

We now state an important result which is used in the text. Let g = exp
(
κIλ

I
)

and

g′ = exp
(
κ′Iλ

I
)

be two SL(2,R) elements. Then the necessary and sufficient condition

for g1g2 = g2g1 to hold is κI = cκ′I for I = 0, 1, 2 and any c ∈ R. This can be seen by

using the Baker Campbell Hausdorff formula.



Chapter 3

Isolated Horizons and Asymptotic Symmetries in

2+1 dimensions

3.1 Introduction

In chapter 2, we studied 3d quantum gravity on space-times with toric spatial foliation

in presence of negative cosmological constant. As we have already discussed, all classical

solutions of this theory are locally AdS3. However most important of these solutions are

those which are asymptotically AdS3. It came into prominence mainly due to two results.

One of them was about asymptotic symmetry, which takes the form of the Virasoro

algebra. This was discussed briefly in section 2.3.3. The other factor which triggered

studies in asymptotically AdS spaces, was the existence of the black hole solution. The

theory has been shown to admit the BTZ black hole as an excited state and the AdS3

solution as it’s vacuum [18] 1. As discussed multiple times earlier, the theory of 3d gravity

we have been dealing with (with a the parameter γ), shares the same solution space as

the ordinary theory of gravity. It naively follows that we have potential scope of studying

asymptotically AdS3 solutions and their quantum theory, in this γ deformed phase space.

We have also been comparing the outcomes of our theory with similar studies in

topologically massive gravity (TMG) at each stage of development. In that spirit it should

be apt to look at what TMG offers for space-times which are asymptotically AdS3. The

theory of TMG has some peculiarities - the massive excitations carry negative energy for

a positive coupling constant (in this case, it is the G) [2]. In case of negative cosmological

1At this point, we must take note of the fact that there are a more general class of black holes in 2+1

topological gravity theories [73], of which BTZ is a special one.

43
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constant TMG, the situation is drastic. Change in sign of the coupling constant gives

excitations with positive energy but gives negative mass BTZ black hole solutions [74].

Studies on 3d black holes (see [74–77] and references therein) and their entropy cal-

culation in topological 3d gravity as well as TMG have formed a major body of research

in the field of 2+1 quantum gravity. For example, particularly entropy has been studied

in great detail in [68,72,78,79] for a large class of interactions governed by Chern Simons

theory. These computations are majorly based upon two different routes. Most popular

is the one which follows [52]. A simple use of Cardy formula for the central extensions

and the Hamiltonian modes in the resulting Virasoro algebras gives the entropy (see [80]

for discussions). This is again based on the results of the seminal paper by Brown and

Henneaux [19], briefly described in 2.3.3. On the other hand, there is another path,

(eg [68, 79]) which uses covariant phase space framework, following Wald [81, 82]. Un-

fortunately this approach heavily relies on the (bifurcate) Killing horizon structures and

they have their own problems including restriction to non-extremal horizons only.

Dynamical issues, conserved charges in similar class of theories (for asymptotically AdS

cases and with or without inner horizon), including the canonical realization of asymptotic

symmetries have been studied in [31,32,46,47,78,83–89]. Entropy of the BTZ black hole

in these modified topological theories and the TMG were also presented in these papers.

Contrary to the Bekenstein-Hawking expectation, the entropy turns out not only to be

proportional to the black hole area, but also to some extra terms, involving even the

horizon angular momentum [46,78]. In this chapter, we shall investigate related issues for

a general class of theories in a covariant manner and exhibit reasons why such results are

expected. Moreover, we shall establish that our method is equally applicable to extremal

and non-extremal black holes since it does not rely on the existence of bifurcation spheres.

Our aim will be to establish the laws of black hole mechanics in this theory and to

determine entropy in fully covariant framework. We stress here, that our analysis of the

horizon dynamics applies for an infinite class of space-time manifolds which have an inner

boundary (with some specific boundary conditions) and are asymptotically AdS which

may allow arbitrary matter or radiation outside the horizon. 2

2But one may argue that since 3d pure gravity is locally non-dynamical, solution space may be essen-

tially finite dimensional and BTZ solution specifies that uniquely for such given asymptotic conditions.
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In this respect, it becomes important to introduce conserved charges like the angular

momentum and mass. We shall use the formalism of isolated horizons to address these

issues. The set-up is robust and conceptually straightforward, resulting in surprising

simplicity in calculations. The detailed definition of isolated horizons, their classical

dynamics including application to black-hole dynamics were developed in a series of papers

[23,90–96]. For 2+1 dimensions the analysis needed some attentions, which were addressed

in [27]. We shall however use a weaker set of boundary conditions than [27], extend to

more general theories, study the asymptotic symmetries (apart from working out the

horizon dynamics) and eventually determine the entropy of horizons.

The basic idea behind the quasi-local description of isolated horizons is following: a

horizon (black hole or cosmological) is a null hyper-surface which can be described locally,

by providing the geometric description of that surface only. Black hole horizon (we pri-

marily are interested in these horizons here) is described in this formalism as an internal

boundary of space time which is expansion free and on which the field equations hold3.

Unlike in the case of Killing horizons/event horizons, we need not look in to the bulk

near-horizon or asymptotics of the space time to define isolated horizons; only horizon

properties are enough. It is because of this generality that isolated horizon is useful to

describe even solutions where the asymptotic structure is still not well-defined or has not

fully developed. As it happens (and we shall show this below), the boundary conditions

on the horizon itself enable us to prove the zeroth law of black hole mechanics directly.

The first law of black hole mechanics and construction of conserved charges is not diffi-

cult in this formalism. We will employ the formalsim of covariant phase space, already

discussed in 1.0.2, in order to study those charges. This has already been applied suc-

cessfully to study dynamics of space times with isolated horizon as an internal boundary.

The conserved charges (like angular momentum) are precisely the Hamiltonian functions

corresponding to the vector field generating canonical transformations or the so called

As we will be exploring through the chapter, it will be revealed that indeed there are infinite num-

ber of dynamically independent degrees of freedom coming from boundary excitations (both inner and

asymptotic). Moreover solutions of more general class containing black holes are known [73].
3This construction is more general than that of Killing horizon. Laws of black hole mechanics were

proved for this quasi-local definition too [81, 82, 97]. But, as mentioned earlier this formalism does not

seem useful to address extremal horizons. Improvements by introducing extremal horizons in the same

space of the non-extremal horizons in the isolated horizons framework were made in [98,99].
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Hamiltonian vector fields (which in this case is related to rotational Killing vector field on

). The first law, in this description, comes out as a result of imposing the condition that

the null generator of the horizon should give rise to Hamiltonian flow on the phase space.

These features, as we shall show below, can be established very easily in the regime of

symplectic geometry.

Now let us focus on the dynamical implications of kinematical asymptotic symme-

tries, in the above-mentioned framework. We note that there is a precise definition of the

asymptotic symmetry group, if we know the fall-off behaviour of the geometry asymptot-

ically. A natural question to ask is whether the action of this group on the pre-symplectic

manifold, defined through the degenerate symplectic structure, is a Hamiltonian. As have

been the expectation through canonical analyses made earlier, the answer is not in the

affirmative, rather the algebra of symmetry generators get centrally extended. This leads

to finding the black hole entropy using the Cardy formula (just as for the TMG case). In

a sense it is similar to TMG where the parameters are the topological mass and the cos-

mological constant. (For TMG, this implies that the massive graviton introduced through

the extra couplings have no effect on the entropy.)

In this chapter our plan is to first 3.2, recall the definition of Weak Isolated Horizons

(WIH) and prove the zeroth law of black hole mechanics [98,99]. The proof of zeroth law

is purely kinematical and does not require any dynamical information. Since we shall be

interested in manifolds with inner and outer boundaries, an extension of the dynamical

questions addressed in the first chapter 1 is in order. That will be taken care of next

3.3.1. A brief description of the BTZ solution as an example of a black hole solution

in this theory will also be presented. In sections 3.3.2 and 3.3.3, we shall establish that

indeed the action principle is well defined even when the inner boundary is a WIH. In sec-

tion 3.3.4, we construct the space of solutions and pre-symplectic structure for space-time

manifolds equipped with a WIH. The phase-space contains all solutions, (extremal as well

as non-extremal black hole solutions) which satisfy the boundary conditions of WIH for

the inner boundary and are asymptotically AdS at infinity. In section 3.3.6, we shall show

how the angular momentum can be extracted from the symplectic structure. The angular

momentum will naturally arise as a Hamiltonian function (on the phase-space) corre-

sponding to the Hamiltonian vector field associated with rotational Killing vector field
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on the space-time. When the definition is applied to the BTZ solution, it will naturally

arise that the angular momentum depends on the parameters J and M of the solution.

Next (3.4), we will construct the vector fields which generate diffeomorphisms preserving

the asymptotic conditions. We shall construct Hamiltonians functions corresponding to

these vector fields and show that in presence of a WIH inner boundary, the Hamiltonian

charges do not realize the algebra of vector fields. The difference is a central extension

which gives rise to the entropy for black holes in these theories. We shall also observe

that the parameter γ shows up in all stages. We shall discuss these issues in the section

(3.5).

The work presented in this chapter follows those presented in our paper [100].

3.2 Weak Isolated Horizon: Kinematics

We now give a very brief introduction to weak isolated horizons [98]. Let M be a three-

manifold equipped with a metric gab of signature (−,+,+). Consider a null hypersurface

∆ in M of which `a is a future directed null normal. However, if `a is a future directed

null normal, so is ξ`a, where ξ is any arbitrary positive function on ∆. Thus, ∆ naturally

admits an equivalence class of null normals [ ξ`a ]. The hypersurface ∆ being null, the

metric induced on it by the space-time metric gab will be degenerate. We shall denote this

degenerate metric by qab , gab←−
(since we are using abstract indices, we shall distinguish

intrinsic indices on ∆ by pull-back and , will mean that the equality holds only on

∆). The inverse of qab will be defined by qab such that qabqacqbd , qcd. The expansion

θ(` ) of the null normal `a is then defined by θ(` ) = qab∇a`b, where ∇a is the covariant

derivative compatible with gab. Null surfaces are naturally equipped with many interesting

properties. Firstly, the null normal is hyper-surface orthogonal and hence is twist-free.

Secondly, the `a is also tangent to the surface. It is tangent to the geodesics generating

∆. Thus, any `a in the class [ξ`a] satisfies the geodesic equation:

`a∇ a←−
`b , κ(`) `

b. (3.1)

We shall interpret the acceleration κ(`) as the surface gravity. If the null normal to ∆ is

such that κ vanishes, we shall call it to be extremal surface. Otherwise, the surface will be
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called non-extremal. The variation of κ in the null class 4 [ξ`] being as κ(ξ`) = ξκ(`) + £`ξ.

In what follows, we shall use the Newmann-Penrose (NP) basis for our calculations. In

three dimensions, this will consist of two null vectors `a and na and, one space-like vector

ma They satisfy the condition `.n = −1 = −m.m while other scalar products vanish.

This basis is particularly useful for our set-up because the normal to ∆, denoted by `a

can be chosen to be the `a of NP basis. The space-like ma will be taken to be tangent

to ∆. In this basis, the space-time metric will be given by gab = −2 `(anb) + 2m(amb)

whereas the pull-back metric qab will be simply, qab , mamb.

3.2.1 Weak Isolated Horizon and the Zeroth Law

The null surface ∆ introduced above is an arbitrary null surface equipped with an equiva-

lence class of null normals [ξ`a]. The conditions on ∆ are too general to make it resemble

a black hole horizon. To enrich ∆ with useful and interesting information, we need to im-

pose some additional structures (the imposed conditions will be weaker than that in [27]

in the sense that our equivalence class of null normals will be related by functions on ∆

rather than constants). As we shall see, the zeroth law and the first law of black hole

mechanics will naturally follow from these conditions. These definitions will be local and

only provides a construction of black hole horizon and do not define a black hole spacetime

which is a global object. However, if there is a global solution, like the BTZ one, then

these conditions will be satisfied.

The null surface ∆, equipped with an equivalence class of null normals [ξ`a], will be

called a weak isolated horizon (WIH) if the following conditions hold:

1. ∆ is topologically S1 × R.

2. The expansion θ(ξ`) , 0 for any ξ`a in the equivalence class.

3. The equations of motion and energy conditions hold on the surface ∆ and the vector

field −T ab ξ`b is future directed and causal.

4Without the positive function ξ, κ cannot be set to zero unless the null hyper-surface is part of a

neigbourhood of family of null hyper-surfaces. This follows from the fact that not only the hyper-surface

normal be null but also that it’s derivative off the surface vanishes (see sec 3.1 of [101])
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4. The above conditions imply existence of a 1-form $ such that

∇ a←−
`b , $(`)

a `
b.

and it is Lie-dragged along the horizon ∆,

£ξ`$
(ξ`) , 0 (3.2)

In the literature, ∆ is called a non-expanding horizon (NEH) if it satisfies only the

first three conditions. It is clear that that the boundary conditions for a NEH hold good

for the entire class of null normals [ξ`a] if it is valid for one null normal in that class. The

Raychaudhuri equation imply that NEHs are also shear free. Thus, NEHs are twist-free,

expansion-free and shear-free and this implies that the covariant derivative of `a on ∆ is

much simple. This is the reason for existence of the 1-form $ in the third point above

(see appendix 3.5 for a Newman-Penrose type discussion), such that

The one form $
(`)
a varies in the equivalence class [ξ`a] as

$(ξ`) , $(`) + d ln ξ (3.3)

A few other conclusions also follow. Firstly, from equations (3.1) and (3.3), it follows

that κ(ξ`) , ξ`.$(ξ`). Secondly, that the null normals in the equivalence class are Killing

vectors on NEH £` qab , 2∇(a`b)←−−−
, 0. Thirdly, the volume form on ∆, is Lie-dragged by

the null normal in the equivalent class, ie, £ξ`m , 0.

At this point one should note that the acceleration κ(ξ`) is in general a function on ∆.

Now we would want NEH to obey the zeroth law of black hole mechanics, which requires

constancy of the acceleration of the null normal on ∆. This puts further restriction on

it. This is done by demanding the fourth condition in the list of boundary conditions,

equation (3.2). Although this is not a single condition, (i.e. unlike the other three

conditions, it is not guaranteed that if this condition holds for a single vector field `a, it

will hold for all the others in the class [ξ`a] for any arbitrary ξ), one can always choose a

class of functions ξ on ∆ [98,99], for which this reduces to a single condition. For example,

if the class of function is, ξ = F exp(−κ(`)v) + κ(ξ`)/κ(`), where `a = (∂/∂v)a and F is a
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function such that £` F , 0, the condition holds for the entire equivalence class.5. Also

note that from (3.3) that d$(ξ`), which is proportional to the Weyl tensor, is independent

of variation of ξ. Since the Weyl tensor vanishes identically in three dimensions, we have

d$(ξ`) , 0. The equation (3.2) then gives the zeroth law : dκ(ξ`) , 0.

3.3 Weak Isolated Horizon: Dynamics

In this section, we would derive the first law of black hole mechanics. The required

ingredients, namely the dynamics of the theory and the boundary conditions are already

present in our hands. In the following subsections we would set the stage for demonstrating

the first law. These computations do work for any black hole solution which obeys the very

week boundary conditions spelt above. However for the purpose of comparison we will

be referring to results pertaining to the well known BTZ solution at each step. As have

been the theme of this thesis, we shall use the first order connection formulation. This

formulation is tailor-made for our set-up and the calculational simplicity will be enormous.

In particular, the construction of the covariant phase-space and it’s associated symplectic

structure is a straightforward application of the notions used in higher dimensions [98,99].

The use of forms also simplifies the calculation of first law and the conserved charges.

Our 3-manifoldM will be taken to be topologically M×R with boundaries. The inner

null boundary will be denoted by ∆ which is taken to be topologically S1×R. The initial

and final space-like boundaries are denoted by M− and M+ respectively. The boundary

at infinity will be denoted by i0. In what follows, the inner boundary will be taken to be

a WIH. In particular, this implies that the surface ∆ is equipped with an equivalent class

of null-normals [ξ`a] and follows eqn. (3.2).

3.3.1 The BTZ solution

Just like in 2 + 1 gravity with a negative cosmological constant, the 2 parameter family

of BTZ black holes is a solution of our theory (1.10). In the standard coordinates, the

5This is a virtue in disguise in the sense that we can interpolate between extremal horizons, with

κ , 0 to non-extremal horizons with κ 6= 0 using this ξ. In other words, we can use this formalism to

accommodate extremal as non-extremal horizons in the same phase space.
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solution is given by:

ds2 = −N2 dt2 +N−2 dr2 + r2(Nφ dt+ dφ)2, (3.4)

where the lapse and the shift variables contain the two parameters M and J and are

defined by:

N2 = (−M
π

+
r2

l2
+

J2

4πr2
) and Nφ = − J

2πr2
(3.5)

More suitable it is for our purpose, when expressed in terms of the first order variables.

In a particular frame (being commensurate with (3.4)), these read as:

e0 = N dt, e1 = N−1 dr and e2 = r ( dφ+Nφ dt )

ω0 = −N dφ, ω1 = N−1Nφ dr and ω2 = − r
l2
dt− r Nφ dφ. (3.6)

The horizon is defined through the zeros of the lapse function N which gives the position

of the horizon to be:

r∓ = l

[
M

2π

{
1∓ (1− (J/Ml)2)

1
2

}] 1
2

(3.7)

It is not difficult to see that the outer horizon (at r+) satisfies the conditions of WIH ∆.

It is a null surface with null normal `a = (∂/∂v)a +Nφ(r+) (∂/∂φ)a. A simple calculation

also shows that θ(`) , 0. In what follows, we shall always refer back to this solution to

check if our definitions for conserved charges are consistent.

3.3.2 Computing tetrads and connection on ∆

Before proceeding with the variation of the action and determining the equations of mo-

tion, it will be useful to have the values of the tetrad and connection on the null surface

∆. The usefulness of such calculation will be apparent soon. We shall assume that it is

possible to fix an internal null triad (`I , nI ,mI) such that `InI = −1 = −mImI and all

others zero. The internal indices will be raised and lowered with ηIJ . Given the internal

triad basis (`I , nI ,mI) and eIa, the spacetime null basis (`a, na,m
a) can be constructed.

We shall further assume that the internal basis is annihilated by the partial derivative

operator, ∂a (`I , nI ,mI) = 0.
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Using the expression of the spacetime metric in NP basis and the internal metric, we

can write the tetrad eIa on WIH ∆ as:

eIa←−
, −na`I +mam

I (3.8)

To calculate the expression of connection on ∆, we shall use the NP coefficients which

can be seen in the covariant derivatives of the NP basis. They are as follows:

∇ a←−
`b , $(`)

a `b (3.9)

∇ a←−
nb , −$(`)

a nb + U (`,m)
a mb (3.10)

∇ a←−
mb , U (`,m)

a `b, (3.11)

where, the superscripts on the one-forms $
(`)
a and U

(`,m)
a indicate that they depend on the

transformations of the corresponding basis vectors. The one-forms used in the eqn. (3.9)

are compact expression of the NP coefficients. They are given by:

$(`)
a , (−ε na + αma) (3.12)

U (`,m)
a , (−π na + µma) (3.13)

We will now demonstrate how the Newmann-Penrose coefficient α is fixed to be real

number on ∆ using topological arguments. Note from previous discussion that d$(`) , 0.

From the definition (3.50) we have dm
←−−−

, −ρm∧n. But because ∆ is expansion-free and `a

is the generator of ∆, ρ , 0. Hence ma is also closed on ∆ (m should not strictly be exact

since
∫
S∆
m ∼ area of horizon 6= 0). Since the first cohomology group of ∆ ' R×S1 ≡ R

is non-trivial, we have in general neither $(`) nor ma exact. Hence there exists smooth

function ς and a real number s for which

$(`) , d ς + sm (3.14)

We now introduce a potential ψ(`) for surface gravity (or the acceleration for `a) κ(`) ,

`a$
(`)
a , ε through

£` ψ(`) , κ(`).

Since the zeroth law implies constancy of κ(`) on ∆, ψ(`) can only be function of v (could

be treated as the affine parameter on ∆) only. Hence £mψ(`) , 0, which implies on the
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other hand dψ(`) , −ε n and $ , dψ(`) + αm. It is tempting to choose ς = ψ(`) by

compared with (3.14). That could only be supported if ∆ is axisymmetric. (Because even

after choosing a triad set for which d←−n , 0, we end up with dα←−∧m , 0, which renders

dα←− , 0 only if α is axisymmetric). For that case, we conclude $(`) , ( dψ(`) + αm ),

α ∈ R.

Now, to calculate the connection, we use two facts. First is that the tetrad is an-

nihilated by the covariant derivative, ∇a e
I
b = 0 and, secondly that partial derivative

annihilates the NP internal basis so that

∇ a←−
`I , −εIJKωaK `J . (3.15)

Using equations (3.12) and (3.15) and εIJK = 3! `[InJmK], we get the following ex-

pression for pulled-back connection on ∆:

ωIa←−
, −U (`,m)

a `I +$(`)
a mI . (3.16)

The equation (3.16) will be used frequently in what follows.

3.3.3 Differentiablity of the action in presence of ∆

In the chapter 1 we demonstrated that we get the first order Einstein equations of motion

even by varying the generalized action (1.10) containing γ. However that result obtained

for space-time manifold being boundary-less. The task is now to vary the action to obtain

the equations of motion and also to verify that the action principle is obeyed in presence

of the boundaries, since we are looking for dynamics in presence of isolated horizon. The

variation will be over configurations which satisfy some conditions at infinity and at the

inner boundary (see fig. (3.1)). At infinity, they satisfy some asymptotic conditions which

are collected in the appendix of [27]. On the inner boundary ∆, they are subjected to the

following conditions: (a) the tetrad (e) are such that the vector field `a = eaI`
I belongs

to the equivalence class [ξ`a] and (b) ∆ is a WIH. On variation, we shall get equations

of motion and some surface terms. The surface terms at infinity vanish because of the

asymptotic conditions whereas, as we shall show, those at WIH also vanish because of

WIH boundary conditions.
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Figure 3.1: Description of space-time. The spacetime is bounded by 2-dimensional sur-

faces ∆,M∓ and the infinity. The horizon ∆ is a 2-dimensional null surface and M∓ are

initial and final hypersurfaces. The infinity is AdS if we work with a spacetime with

negative cosmological constant.

Variation of the action with respect to the tetrad (e) and connection (Aω) leads to

(for γ2 6= 1):

deI + εIJK e
J ∧ ωK = 0 (3.17)

and dωI +
1

2
εI
JK ωJ ∧ ωK = − 1

2l2
εIJK eI ∧ eJ ∧ eK . (3.18)

The first equation above just points out that the connection ωI is a spin-connection and

the second equation is the Einstein equation. Let us now concentrate on the surface terms.

The terms on the initial and final hyper surfaces M− and M+ vanish because of action

principle. Those at the asymptotic boundary vanish because of the fall-offs at infinity.

On ∆, these are given by:

δ I = −
∫

∆

(2m ∧ δ $(`) +
l

γ
$(`) ∧ δ $(`) +

1

lγ
m ∧ δ m) (3.19)
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Our strategy will be to show that the integral is constant on ∆ and the integrand

is a total derivative so that the integral goes on to the initial and the final boundaries

where the variations are zero by assumption. This will then imply that the integral itself

vanishes on ∆. Note that in the above equation, δ $(`) refers to the variation in $(`)

among the configurations in the equivalence class [ξ`a]. The relation between these are

precisely given by eqn. (3.3). Now, we consider the lie derivative of the integrands by

ξ`. Since dm , 0, it follows that £ξ`m , 0 and £ξ`$
(`) , d(£ξ` lnξ). Thus, in the first

term, the total contribution is on the initial and final hyper surfaces M− and M+ where

the variations vanish. Identical arguments for the second and the third integrands also

show that the corresponding integral vanishes. Thus, the integral is lie dragged on ∆ and

since the variations are fixed on the initial and final hyper surfaces, the entire integral

vanishes and the action principle remains well-defined.

3.3.4 Covariant Phase Space

Analysis of the dynamics of this theory has been considerably worked out in literature [31,

85] in the canonical framework even in presence of asymptotic boundary. We recall that a

covariant phase space analysis for the present theory was described in chapter 1, although

in absence of boundaries. As we progress, we will see how apt the covariant analysis is in

understanding horizon phenomena and even the conserved charges arising from asymptotic

symmetries; using the general ideas of symplectic geometry. We refine the concept of

covariant phase space detailed in chapter 1 here as the space of classical solutions (3.17)

which satisfy the boundary conditions specified in the previous subsections. In other

words, the covariant phase space Γ will consist of of solutions of the field equations which

satisfy the boundary conditions of WIH at ∆ and have fall-off conditions compatible with

asymptotic conditions.

Although outlined earlier, we express the structures on this pre-symplectic manifold

again in terms of the explicit variables, which are more suited in the present case. In order

to equip this space with a symplectic structure 6, we find the symplectic potential (1.13)

from variation of the Lagrangian (1.12), expressed in terms of the variables relevant to

6To be more precise, here we will be dealing with the pre-symplectic structure, since the theory has

gauge redundancy, which appear as ’degenerate directions’ for the symplectic 2-form
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gravity:

Θ(δ) = −2 (eI ∧ δ ωI)−
l

γ
(ωI ∧ δ ωI)−

1

lγ
(eI ∧ δ eI). (3.20)

Upon antisymmetrized second variation, it gives the symplectic current J which is a phase-

space two-form. For two arbitrary vector fields δ1 and δ2 tangent to the space of solutions,

the symplectic current for (3.20) is given by following closed two form (cf. (1.14)):

J(δ1, δ2) = δ1 Θ(δ2)− δ2 Θ(δ1)

= −2

[(
δ1 e

I ∧ δ2 ωI − δ2 e
I ∧ δ1 ωI

)
+
l

γ
δ1 ω

I ∧ δ2 ωI +
1

γl
δ1 e

I ∧ δ2 eI

]
(3.21)

Since the symplectic current is closed, d J(δ1, δ2) = 0, we define the presymplectic struc-

ture on the phase-space by (cf. (1.14)):

Ω (δ1, δ2) =

∫
M+∪M−∪∆∪i0

J (δ1, δ2), (3.22)

where the terms under the integral show contributions from the various boundaries (refer

to figure (3.1)). The surfaces M+ and M− are partial Cauchy slices inside the spacetime

which meet ∆ in S1 and S2 respectively. To show that the symplectic structure is inde-

pendent of the choice of Cauchy surface, we again consider the function ψ(`) such that

£` ψ(`) = κ(`) and ψ(`) vanishes on S1 (where the affine parameter v = 0). Choosing an

orientation for the boundary, it is not difficult to show that J (δ1, δ2) , dj (δ1, δ2) so that

(

∫
M1

−
∫
M2

) J (δ1, δ2) = (

∫
S1

−
∫
S2

) j (δ1, δ2) (3.23)

which establishes the independence of symplectic structure on choice of Cauchy sur-

faces.The pre-symplectic structure on the space of solutions of the theory in presence

of ∆ turns out to be

Ω (δ1, δ2) = −2

∫
M

[(
δ1e

I ∧ δ2ωI − δ2e
I ∧ δ1ωI

)
+
l

γ
δ1ω

I ∧ δ2ωI +
1

γl
δ1e

I ∧ δ2eI

]
− 2

∫
S1

(
δ1ψ(`) δ2

[(
lα

γ
+ 1

)
m

]
− δ2ψ(`) δ1

[(
lα

γ
+ 1

)
m

])
(3.24)

We shall use (3.24) to define conserved quantities like the angular momentum and prove

the first law in the next two subsections. We shall also construct the algebra of conserved

charges using this symplectic structure and obtain the entropy for black holes in this

theory.
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3.3.5 Angular Momentum

We shall first introduce the concept of angular momentum starting from the symplectic

structure, equation (3.24). Let us consider a fixed vector field ϕa on ∆ and all those

spacetimes which will have ϕa as the rotational Killing vector field on ∆. The field ϕa is

assumed to satisfy certain properties. First, it should lie drag all fields in the equivalence

class [ξ`a] ans secondly, it has closed orbits and affine parameter ∈ [0, 2π). To be more

precise, we can construct a submanifold Γϕ of the covariant phase space Γ the points of

which are solutions of field equations which admit a WIH (∆, [ξ`a], ϕa) with a rotational

Killing vector field ϕa such that £ϕqab , 0, £ϕ$
(l) , 0. Now, let us choose a vector field

φ in M for each point in Γϕ such that it matches with ϕa on ∆.

We shall now look for phase space realization of diffeomorphisms generated by this

vector field φa on spacetime. Corresponding to the diffeomorphisms on spacetime, we

can associate a motion in the phase space Γϕ which is generated by the vector field

δϕ = £ϕ. It is expected that the vector field δφ will be Hamiltonian (i.e. generate

canonical transformations). In that case, the Hamiltonian charge for the corresponding

to the rotational Killing vector field can be called the angular momentum 7. In short, this

implies that Ω(δ, δφ) = δJ (φ) and the angular momentum is J (φ) is given by:

J (φ) = −
∮
S∆

[
(ϕ ·$)m+

l

2γ
(ϕ ·$)$ +

1

2γl
(ϕ ·m)m

]
+

∮
S∞

[
(φ · AI)eI +

l

2γ
(φ · AI)ωI +

1

2lγ
(φ · eI)eI

]
= −J∆ + J∞ (3.25)

It is then natural to interpret J∆ to be the angular momentum on ∆. It is simple to

check that for BTZ space-time the expressions for J∆ and J∞. It follows that J∆ =

( J −Ml/γ ) = J∞, leaving J (φ) = 0 (Note that for γ → ∞, we get the value of angular

momentum of BTZ black hole for GR in 2 + 1 dimensions with a negative cosmological

constant). That J∆ = J∞ is also supported by the fact that φa is global Killing vector in

BTZ solution. However, if there are electromagnetic fields, the result differs. The value

7Since the theory we started with is background independent (has manifest diffeomorphism invariance

in bulk) it is natural to expect that Hamiltonians generated by space time diffeomorphisms must consist

of boundary terms, if any.
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of the angular momentum at infinity J∞ also gets contribution from the electromagnetic

fields and J (φ) 6= 0 [27].

3.3.6 First Law

First law is associated with energy which implies that we should look first for a timelike

Killing vector field on spacetime. Let us consider a time-like vector field ta in M associ-

ated to each point of the phase space (live) which gives the asymptotic time translation

symmetry at infinity and becomes ta , ξ `a − Ω(t)φ
ax on ∆, where Ω(t) is a constant on

∆ but may well vary on the space of histories. Just like in the previous subsection, we

ask if the associated vector field δt on the phase-space Γφ is a Hamiltonian vector field.

The associated function shall be related to the energy. In checking so, we have:

Ω (δ, δt) = X(t)(δ) ,

where,

X(t)(δ) = −2κ(t) δ

(
(1 +

l α

γ
) a∆

)
− 2Ω(t) δJ∆ +X(t)

∞ (δ) (3.26)

and κ(t) actually the surface gravity associated with the vector field ξ`a. X
(t)
∞ (δ) involves

integrals of fields at asymptotic infinity and can be evaluated using asymptotic conditions

on the BTZ solution for example. A simple calculation gives:

X(t)
∞ (δ) = δ

(
M − J

γl

)
Now the evolution along ta is Hamiltonian only if right hand side of (3.26) is exact

on phase space. This implies if the surface gravity is a function of area only and Ω(t) a

function of angular momentum only, there exists a phase space function Et
∆ such that the

first law appears:

δEt
∆ =

[
κ(ξ`) δ ((1 + lα/γ) a∆) +Ω(t) δJ∆

]
=

(
κ(ξ`) δã∆ +Ω(t) δJ∆

)
(3.27)

where ã∆ =

(
1 +

lα

γ

)
a∆. The presence of κ(ξ`) in the first law indicates that the first law

is same for both extremal and non-extremal black holes. A mere choice of the function ξ
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can help us interpolate between these class of solutions. We note here that modification

in the symplectic structure of the theory leaves its footprint through γ in the first law of

(weak) isolated horizon mechanics. The term that plays the role of the ‘area’ term as it

appears in this first law differs from the standard geometrical area of the horizon. If we

restrict ourselves to the class of BTZ horizons, we have, 8

ã∆ = 2π (r+ − r−/γ) = a∆ −
lπJ

γa∆

(3.28)

3.3.7 Admissible Vector Fields and Horizon Mass

In the previous discussion we used the Hamiltonian evolution of the live time vector field

ta to deduce the first law. It is necessary and sufficient for the existence of the Hamiltonian

function Et
∆ as in (3.27) that the functions κ(t), Ω(t) should be functions of the independent

horizon parameters ã∆ and J∆ only and following exactness condition should hold:

∂κ(t)

∂J∆

=
∂Ω(t)

∂ã∆

. (3.29)

However, given any vector field, it is not guaranteed that these will be satisfied. In other

words, not all vector fields are Hamiltonian. Vector fields ta for which these conditions

are satisfied are admissible and there are infinite of them. We wish to find the class

of admissible ta s by solving (3.29). The essential point is to show the existence of a

canonical live vector field. The horizon energy defined by this canonical live vector field

is called the horizon mass. In order to proceed, we make the following change of variables

for convenience:

(ã∆, J∆)→ (R+, R−)

8In our conventions, the double roots r+, r− of the BTZ lapse polynomial are related with BTZ (

γ 7→ ∞) mass (M) and angular momentum (J) as

M = 2π
r2+ + r2−

l2
and J = 4π

r+r−
l
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with

R+ =

√
γl

2π (γ2 − 1)

(
J∆ +

γ ã2
∆

8πl

)

R− = γ

√
γl

2π (γ2 − 1)

(
J∆ +

γ ã2
∆

8πl

)
− γã∆

4π
(3.30)

Now for κ(t) we wish to start with a sufficiently smooth function κ0 of the horizon param-

eters. In general κ(`) 6= κ0. But we can always find a phase-function ξ in ta , ξ`a−Ω(t)ϕ

such that κ(ξ`) = κ0. Again, there is a canonical choice, supplied by the known solution,

the BTZ one, in which there is a unique BTZ black-hole for each choice of the horizon pa-

rameters. We therefore set κ0 = κ(t)(BTZ), where ta is the global time translation Killing

field of the BTZ space time, and express it in terms of the newly introduced coordinates:

κ0 =
R2

+ −R2
−

R+l2

The angular velocity $(t) satisfying (3.29) comes out as Ω(t) =
R−
lR+

. Using this value of

angular velocity and equation (3.30)in (3.27) we have

δEt
∆ = δ

[
2π

l2
(
R2

+ +R2
− − 2R+R−/γ

) ]
(3.31)

Now, from equations (3.30) and (3.31), we have horizon mass in terms of the independent

horizon parameters:

M∆ (J∆, ã∆) =
γJ∆

l
+
γ2 ã2

∆

8πl2
− ã∆

2l2

√
lγ (γ2 − 1)

(
J∆ +

γ ã2
∆

8πl

)
.

It is not difficult to check that this works for BTZ black hole. Restricting to BTZ values,

this reads: M∆ = (M−J/γl ). This exactly matches with the asymptotic charge X
(t)
∞ (δ) =

δ (M − J/γl) associated with asymptotic time translation vector ta of BTZ space time

as would have been expected. We must also note that the deformations of the conserved

charges : angular momentum and mass under the influence of the parameter γ are exactly

same as those stated in [31,32,46,85] and at the ‘chiral point’ (γ = 1) angular momentum

and the mass become proportional to each other with opposite sign.
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3.4 Covariant phase space realization of asymptotic symmetry

algebra

It has been suggested that microscopic details which explain the thermodynamics of black

holes is independent of any theory of quantum gravity. If this is taken seriously, it

implies that the microstates that describe black hole space-time can be understood from

a principle which is expected to govern all quantum gravity theory. It then seems natural

to use the arguments of symmetry. Whatever be the theory of quantum gravity, it must at

least preserve a part of the symmetries of classical theory. Study of asymptotic symmetries

have been advocated to serve this purpose and has achieved striking success in reproducing

the Bekenstein-Hawking formula. This issue was first addressed in the context of 2 + 1

gravity (with negative cosmological constant) by [52].

In this issue we note that diffeomorphisms which are gauges for any theory of gravity

become physical symmetry at the boundaries of the space time manifold by physical

requirements (boundary conditions). For example, in 3 + 1 dimensional asymptotically

flat space times one naturally identifies a time like vector field at asymptotic infinity as the

unique time translation (Killing) as in Minkowski space time and fixes it once and for all.

This fixes the diffeomorphisms partially and play the role of a physical symmetry. Only

then we can associate a Hamiltonian or Noether charge with time which is the ADM mass.

In [19], the authors considered diffeomorphisms generated by asymptotic vector fields

which are a bit ‘relaxed Killing symmetries’ of the asymptotic metric in a 2+1 dimensional

space time and showed that they form the pair of affine Witt algebra (2D conformal

algebra, or deformation algebra of S1) as opposed to SO(2, 2), the isometry group of

AdS3. We will show that those vector fields actually generate flows in the phase space

which are at least locally Hamiltonian and find the corresponding Hamiltonians (hence

qualifying as physical symmetries), i.e. charges in the covariant phase space framework.

The preference for this frame work is firstly due to its manifest covariant nature and

secondly for its immense calculational simplicity, as compared to canonical framework [78].

According to the suggestion mentioned above, this immediately implies that the quan-

tum theory describing the microstates of black holes is a conformal field theory. The simple

use of central charges in the Cardy formula determines the asymptotic density of quantum
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states of black holes which have same mass and angular momentum and approach the

asymptotic configuration of a classical BTZ black hole; and eventually the Bekenstein-

Hawking result. We shall use the covariant phase-space formulation to compute black

hole entropy in this theory.

We would require now the explicit BTZ solution as a case. For that we refer back

to (3.6). The asymptotic form of these variables match with the AdS ones as expected

upto different orders of 1/r [31, 46, 85]. The asymptotic vector fields which generate

diffeomorphisms preserving the asymptotic AdS structure (much milder than the BTZ

solution) are given by:

ξn := exp (inx+)

[
l

(
1− l2n2

2r2

)
∂t − inr ∂r +

(
1 +

l2n2

2r2

)
∂φ

]
with n an integer and x+ = (t/l+ φ ). It is easy to check that the vector fields satisfy the

affine Witt algebra:

[ξn, ξm] = −i(n−m) ξn+m (3.32)

We now want to investigate if the algebra of the vector fields on the space-time manifold

is also realised on the phase space i.e the Hamiltonian functions (or the generators of

diffeomorphisms) corresponding to the vector fields ξan also satisfy the affine algebra. To

see this, we first associate a phase space vector field δξn to each element ξn of the algebra

such that δξn acts as £ξn on dynamical variables9. Secondly, we need the symplectic struc-

ture which will enable us to construct the Hamiltonian functions as has been described in

the previous sections (see (3.3.5) and (3.3.6)). Since we are interested in the asymptotic

analysis, we will be interested in the contribution to the symplectic structure from the

asymptopia or S∞. If an internal boundary like NEH is present we can assume that the

vector fields whose asymptotic forms are as ξan above vanish on that boundary. From this

point of view, for any arbitrary vector field ξan which vanish on any internal boundary (in

this section, we shall reinstate 16πG but shall choose c = h = 1):

8πGΩ(δ, δξ) =

∮
S∞

[(
ξ · eI

)
δωI−→+

(
ξ · AI

)
δeI−→+

l

γ

(
ξ · AI

)
δωI−→+

1

lγ

(
ξ · eI

)
δeI−→

]
(3.33)

9This is because vector fields on the space time manifold work as generators of infinitesimal diffeo-

morphisms
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The under right arrows indicate pull-back of the forms on S∞. Therefore the second and

the fourth term in the integral do not contribute. Only the internal component e2 (as

given above) survives under the pull back which is given by −rdφ. This being a phase

space constant, the action of δ on it vanishes. Hence, we get

8πGΩ(δ, δξ) =

∮
S∞

[
ξ · (eI +

l

γ
AI)

]
δωI−→ (3.34)

for any arbitrary vector field ξ. Using the above expressions of the fields asymptotically,

we have

8πGΩ(δ, δξn) =: δHn =

(
1− 1

γ

)
δ ( l M + J ) δn,0. (3.35)

Hence we observe that δξn are at least locally hamiltonian for all n and has non-zero

charge only for n = 0. We also note using (3.32) that δ[ξn,ξm] is also a Hamiltonian vector

field with δ H[{ξn, ξm}] given by the right hand side of the following equation

8πGΩ(δ, δ[ξn,ξm]) = −i(n−m)

(
1− 1

γ

)
δ ( l M + J ) δm+n,0 (3.36)

We shall now determine the current algebra of the Hamiltonian functions (i.e. {Hξn , Hξm})
generated by the Hamiltonian vector fields δξn and δξm for arbitrary n,m. This will be

given by:

8πGΩ(δξm , δξn) =

∮
S∞

[
ξn · (eI +

l

γ
AI)

]
δξmωI−→ (3.37)

It is now important that we first pull back AI and then calculate the action of δξm on it

as Lie derivative. After some lines of calculation, we find:

8πGΩ(δξm , δξn) = −2in

(
1− 1

γ

)
( J + lM ) δm+n,0 + ilπn3

(
1− 1

γ

)
δm+n,0 +O (

1

r2
)

= −i(n−m)

(
1− 1

γ

)
( J + lM ) δm+n,0

+ ilπn3

(
1− 1

γ

)
δm+n,0 (3.38)

Comparing (3.36) and (3.38) we infer that the asymptotic diffeomorphism algebra (3.32)

is exactly realized at the canonical level (as a current algebra) except a ‘central term’
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−ilπn3
(

1− 1
γ

)
δm+n,0. This is not surprising, although all the vector fields δξn were

Hamiltonian. The second cohomology group of the Witt algebra 10 is not trivial. A

theorem of symplectic geometry states that in this case the action of the algebra is not

Hamiltonian and moment maps donot exist, which on the other hand implies that the

action of the lie algebra on phase space is not hamiltonian [54] 11, i.e.

δΩ ( δξm , δξn ) 6= Ω ( δ [ξm,ξn] , δ ). (3.39)

Written in terms of the charges Hn, (3.38) reads as:

{Hm, Hn} = −i(n−m)

(
1− 1

γ

)
Hm+n + ilπn3

(
1− 1

γ

)
δm+n,0. (3.40)

Which is isomorphic to the Virasoro algebra.

Now, all of this calculation was done choosing the right moving vector fields. There

also are a set of left moving vector fields which preserve the asymptotic structure:

ξ̃n := exp(inx−)

[
l

(
1− l2n2

2r2

)
∂t − inr ∂r −

(
1 +

l2n2

2r2

)
∂φ

]
where x− = (t/l − φ ). Proceeding along the very same route as before, we again end up

with the result that canonical realization of this asymptotic symmetries are also realized

exactly upto a central term, which now becomes = −ilπn3
(

1 + 1
γ

)
δm+n,0

From the definition of the central charge of Virasoro algebra, which is the centrally

extended version of the Witt algebra, we arrive at the exact formulas for the central

charges for the right and left moving algebras respectively :

c =
3l

2G

(
1− 1

γ

)
and c̃ =

3l

2G

(
1 +

1

γ

)
Once we have the central charges, we can apply the Cardy formula to the BTZ solution to

obtain the black hole entropy, by noting from (3.35) that H0 =
(

1− 1
γ

)
(lM+J)/8πG for

10For any real lie algebra G and its dual G∗ a skew symmetric bilinear map α ∈ G∗ ∧ G∗ is said to be a

cocycle if α ([A,B] , C) +α ([B,C] , A) +α ([C,A] , B) = 0 for all A,B,C ∈ G and [, ] is the usual product

on G. The elements ðf (f ∈ G∗) defined via ðf(A,B) = 1
2f([A,B]), automatically cocycles by Jacobi

identity, are called coboundary. Let us define an equivalence ∼ as: two cocycles α ∼ β if α = β + ðg for

any g ∈ G∗. Now one defines H2G as the additive group of equivalence classes found through the modulo

action of the equivalence relation. All semi simple lie algebras have trivial second cohomology.
11If J [ξm] and J [ξn] are Hamiltonians (calculated in the canonical phase-space) corresponding to the

vector fields ξm and ξn,then J [[{ξm, ξn}] 6= {J [ξm], J [ξn]} where {J [ξm], J [ξn]} =: δξn J [ξm] = −δξn J [ξm].
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the right mover and from an almost identical calculation that H̃0 =
(

1 + 1
γ

)
(lM−J)/8πG

for the left mover:

S = 2π

√
H0c

6
+ 2π

√
H̃0c̃

6

=
2π r+

4G
− 2π r−

4Gγ

(
Since M = 2π

r2
+ + r2

−

l2
, J = 4π

r+r−
l

)
=

(
a∆ −

lπJ

γa∆

)
/4G =

ã

4G
(3.41)

where r+ and r− are the radii of the outer and inner horizon, respectively. If we consider

the thermodynamic analogy of the first law of black hole mechanics (3.27) (derived for

general spacetimes only requiring presence of a weakly isolated horizon only from classical

symplectic geometric considerations), we observe that S ∼ ã. Curiously, even in the

quantum result (3.41), the entropy-modified area relation continues to hold.

3.5 Conclusion

Let us recollect the main findings presented in this chapter. Firstly, we introduced the

concept of WIH in 2 + 1 dimensions. The boundary conditions which have been imposed

on a 2-dimensional null surface are much weaker than the ones suggested in [27]. Our

boundary conditions are satisfied by a equivalence class of null normals which are related

by functions, [ξ`a] rather than constants, [c`a] as was first proposed in [27]. The advantage

of such generalisation lies in the fact that it becomes possible to include extremal as well

as non-extremal solutions in the same space of solutions. Just by choosing the function ξ,

one can move from a non-zero κ(`) to a vanishing κ(ξ`) (see equation (3.1)) which essentially

is like taking extremal limits in phase-space. We also established that the zeroth law (for

all solutions in this extended space of solutions) follows quite trivially from the boundary

conditions.

Secondly, we have explicitly shown that in presence of an internal boundary satisfying

the boundary conditions of a WIH, the variational principle for the generalised 2 + 1

dimensional theory remains well-defined. This enable us to take the third step where

we have constructed the covariant phase-space of this theory. The covariant phase-space
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now contains all solutions of the γ-dependent theory which satisfy the WIH boundary

conditions at infinity. As expected, extremal as well as non-extremal solutions form a part

of this phase-space. We then went on to define the angular momentum as a Hamiltonian

function corresponding to the rotational Killing vector field on the horizon. It was also

explicitly shown that for the BTZ solution, the angular momentum defined in this manner

matches with the expected result.

Thirdly, we established the first law of black hole mechanics directly from the covariant

phase-space, for isolated horizons. Instead of the usual horizon area term one encounters

in this law, we find a modification due to the γ factor. This is a completely new result

in this family of theories. It arose that the first law is the necessarry and sufficient

condition for existence of a timelike Hamiltonian vector field on the covariant phase-space.

However, not all timelike vector fields are Hamiltonian on phase-space, there exists some

which are admissible (there are in fact infinite of them). The canonical choice for these

admissible vector fields are constructed too. Quite interestingly, the first law for the WIH

formulation, equation (3.27), contains κ(ξ`). This implies that the first law holds for all

solutions, extremal as well as non-extremal. However, the thermodynamic implications

of the first law can only be extracted for non-extremal solutions since for the extremal

ones, the first law is trivial. But then, since all solutions are equivalent from the point of

view of WIH bounhdary conditions, the entropy of both class of black hole solutions will

be same. This interpretation of our result is in contradiction to the results of [102–104]

who obtain vanishing entropy for extremal black holes. On the other hand, they are in

agreement to those of [105].

Using asymptotic analysis, we have calculated the entropy of black holes for the theory

under consideration. Contary to the usual approach, we construct the algebra of diffeo-

morphism generating Hamiltonian functions directly from the covariant phase-space. As

usual, we see that the algebra does not match with the Hamiltonian function for the com-

mutator of the asymptotic vector fields. The difference is the central extension. In other

words, the algebra of spacetime vector fields is not realised on the covariant phase-space.

The Cardy formula then gives the entropy directly which matches with the one expected

from the first law. The entropy however not only depends on the geometrical area but

also on of other quantities like the parameter of the solution J and the γ-parameter of
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the theory (equation (3.41)). Keeping the thermodynamic analogy of laws of black hole

mechanics in mind and concentrating on the BTZ black hole, one observes that there is

a perfect harmony between this result and the modified first law. Also recall that our

methods do not rely on existence of bifurcation spheres and applies equally to extremal

and non-extremal black holes. To our knowledge, this has not been reproduced earlier

since the phase space of Killing horizons which satisfy laws of mechanics do not contain

extremal solutions.

Our analysis for the computation of entropy is based on asymptotic symmetry analysis.

The principle of using symmetry arguments to determine the density of states for black

hole is attractive, it does not depend on the details of quantum gravity. The asymptotic

analysis has a major drawback- it seems to be equally applicable for any massive object

placed in place of a black hole. Since such objects are not known to behave like black

holes, it is not clear where to attribute such large number of density of states. One

must directly look at the near-horizon symmetry vector fields for further understanding

[106,107]. However, a more interesting step would be to determine the horizon microstates

as is done in 3 + 1 dimensions. In this case, it arises from classical considerations that

the degrees of freedom that reside on a WIH in 3 + 1 dimensions is a Chern-Simons

theory. Quantization of this theory gives an estimate of the states that contribute to a

fixed area horizon and the entropy turns out to be proportional to area. This has not

been reproduced in 2 + 1 dimensions still and will be investigated in future in order to

compliment these new findings already present here.

Appendix:The Newman-Penrose formalism for 2 + 1 dimensions

In order to make the calculations done in this chapter self-contained we summarise here the

analogue of Newman-Penrose formalism in 2+1 dimensions, which was in detail described

in [27]. We will use a triad consisting of two null vectors la and na and a real12 space-like

12All the N-P coefficients appearing in 2+1 dimensions are therefore real unlike in 3+1
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vector ma, subject to:

` · ` = n · n = 0, m ·m = 1 (3.42)

` ·m = n ·m = 0 (3.43)

` · n = −1. (3.44)

The space-time metric gab can be expressed as

gab = −2 `(anb) +mamb , (3.45)

and its inverse gab is defined to satisfy

gab = −2 `(anb) +mamb. (3.46)

It is then easy to verify that the expression for the triad is just

eIa = −`anI − na`I +mam
I . (3.47)

Just as in the 3+1 case, we express the connection in the chosen triad basis, the connection

coefficients being the new N-P coefficients (the γ defined below is not to be confused with

the Barbero-Immirzi parameter):

∇a`b = −ε na`b + κNP namb − γ `a`b
+τ `amb + αma`b − ρmamb (3.48)

∇anb = ε nanb − π namb + γ `anb

−ν `amb − αmanb + µmamb (3.49)

∇amb = κNP nanb − π na`b + τ `anb

−ν `a`b − ρmanb + µma`b (3.50)

It then simply follows from the expressions above that ∇a `
a = (ε − ρ),∇a n

a = (µ −
γ)and∇am

a = (π − τ). Now we wish to expand the connection 1-form ωIa in the triad

basis with N-P coefficients slated above as coefficients. In order to do so we note that

for an arbitrary 1-form va which may be mapped uniquely to an SO(2, 1) frame element

vI = vae
a
I . Then, for ∇avb = ωIaJ v

J eIb, and using ωa I
J = −εKIJωKa , we arrive at the

expression:

ωKa = (πna + ν`a − µma)`
K + (κNP na + τ`a − ρma)n

K

+(−εna − γ`a + αma)m
K (3.51)



Chapter 4

Finite 3D de-Sitter Gravity

4.1 Introduction

As we have been discussing throughout this part of the thesis, most of the non-trivial

results in 3d gravity including the famous BTZ black hole solution is known for the

negative cosmological constant sector. In addition to that there is a definite trace of

AdS/CFT correspondence when the space-time is asymptotically AdS. On the other hand

study of 3d gravity with positive cosmological constant has generated considerable interest

only recently [108], although there is no straight-forward duality with any conformal field

theory in this case. This involves evaluation of 1 loop partition function in the metric

formulation in order to find the de Sitter vacuum, namely the Hartle Hawking state. It

was shown in this work for the first time the equivalence of Chern Simons framework

of gravity with Einstein theory up to 1-loop level in the quantum regime. In addition

to that, topologically massive gravity (TMG) with positive cosmological constant, has

been thoroughly studied in [109]. The main question these studies aim to address is how

one can make sense of 3d de Sitter quantum gravity, through finding the vacuum state.

Surprisingly, the pure topological gravity theory fails to give any satisfactory answer to

it. This can be envisaged in the sense that the partition function (both in 1-loop and

nonperturbative computations) tend to diverge unregularizably when one considers the

sum over the infinitely large class of allowed classical saddle points. In this case these

saddles are lens spaces (typical solutions of Euclidean 3D de Sitter gravity), which are

distinguished by their homology properties. On the other hand, the answer for TMG

containing local degrees of freedom is in the affirmative. The latter is tame under sum

69
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over all saddles.

The pure gravity and TMG calculations have been considered in the Euclidean sig-

nature with the motivation that Euclideanized de Sitter gravity is ‘thermal’. This has

been made precise in terms of the Euclidean de Sitter geometry in [108]. Moreover, in the

Einstein-Hilbert theory path integral is sensible in the Euclidean picture. On the other

hand if one prefers to study the theory in first order formulation, in the Chern-Simons

(CS) framework, Euclideanization is not an obvious idea that one should come across.

This is because CS theory is manifestly topological and doesn’t rely on background met-

ric as long as perturbative analysis remains not as the primary goal. But once one tries

to make contact with metric formulation through 〈eµ, eν〉 = gµν , Euclideanization can

be viewed from the choice in the internal metric on the frame bundle (of vielbeins), and

hence the structure group. This change reflects upon the choice of gauge group of the CS

theory. Gauge group changes from non-compact SO(3, 1) to compact SU(2)×SU(2), thus

making the problem tractable from gauge theory perspective. The action then becomes

difference of two SU(2) CS theories. We recall that similar situation have been encoun-

tered by us in chapter 1, where we used Lorentzian signature and negative cosmological

constant. That case however differs from the present one in the sense that we had the

non-compact gauge group SL(2,R) over there.

This is the motivation for our purpose to look at Euclideanized version. In this case

we don’t need a Wick rotation in space time and our partition functions keeps the formal

expression

Z =

∫
DA exp

(
i
k

4π

∫
tr

(
A ∧ dA+

2

3
A3

))
.

where ‘tr’ stands for the metric over su(2) . We would see that this form of the path

integral will help us in the end so that the trouble of working with imaginary coupling of

CS will not also get in our way 1. Since we would be confined in the first order regime, our

concern about the background appears only through its possible topologies. The choice of

topology is however motivated strongly from the fact that Euclideanized de Sitter space

1In another important work Witten [110] recently pointed out how quantization of CS theory with

complex coupling can be carried out by suitably deforming the functional integral contour. However for

this case one still has to study the possibility of associating a finite dimensional Hilbert space of CS

theory on a compact Riemann surface, which we need for quantization here.
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can be identified with S3, through its metric and topology. We choose it to be of the form

S3/Γ, or lens spaces to be precise. Γ is a suitable discrete group with known action on

S3 as in [108]. Of course feasible solutions are always locally dS.

Now at this point it may seem that we are free to choose any of the standard quan-

tization techniques for this theory. This may involve directly evaluating the partition

function or taking recourse to geometric quantization [111]. It is well known that the

former is nicely suited for perturbative calculations. In that case one first linearizes the

theory around some particular solution and computes the resulting the 1-loop determi-

nant of the elliptic operator. It is expressed of in terms of the analytic torsion, which

is a topological invariant of 3 manifold in question. This procedure is clear even for

non-compact gauge groups [13]. But once we are interested in nonperturbative results

we must investigate whole of the gauge moduli space of solutions, upon which a suit-

able canonical quantization may be carried out. However, on the given topology of lens

space the solution space modulo the gauge transformations give only a collection of finite

points, which certainly isn’t a symplectic manifold. We therefore use standard surgery

and gluing prescription for the construction of the space and using axioms of TQFT find

the partition function as [112] 2

Z = 〈ψ|U |ψ〉. (4.1)

Here |ψ〉 ∈ HT 2 is a state of quantized CS theory on the boundary of a solid torus, gluing

two of which we construct a lens space. U is an element of the T 2 mapping class group,

specifying which gives us a class of lens spaces. This is where ‘conventional wisdom’

of viewing first order gravity as difference of two SU(2) CS theories fails. This failure

becomes manifest when one looks at the CS levels ± l

8G
. The problem with equal and

opposite couplings is that the CS part corresponding to the negative level is ill-defined and

cannot be quantized on T 2 as already noted already for SO(2, 1) in chapter 2. We need

to extend the theory in a way described in [16,20,26,34] so that the couplings of the CS

theories can be tuned to be positive. This is a necessary condition since dim(HT 2) equals

the product of shifted CS couplings. When both the couplings are positive integers we

get a situation which we regard as consistent quantization. This means, time and again,

2Choosing framing of surgery suitably.
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the γ comes out as a saviour.

Furthermore, we will show in this chapter, that due to this extension (through in-

troduction of a new dimensionless parameter) we get a finite answer for the partition

function, as opposed to [108]. We exhibit the finiteness explicitly at a certain limit of this

new parameter. This is certainly an improvement towards finding an answer about how

meaningful 3d de Sitter quantum gravity is. Works presented in this chapter follow those

in [113].

4.2 The Extended Theory and the Naive Phase-Space

At the classical level, difference between the present scenario and the theory we have

been dealing with in this thesis is not much, as long as the structure of the action is

concerned. As opposed to the earlier example, here we have cosmological constant positive

and signature Euclidean. As a result the CS gauge group is different. Referring back to

table 1.0.1, we see that we have here with us a compact SU(2) × SU(2) CS theory.

The vielbein and the connection are also on the frame bundle of structure group SU(2).

The frame metric is of course η = diag(1, 1, 1) and will be referred to as δIJ at places.

Keeping this implicit fact back in mind, we read the extended action to be same as (1.10).

The apparent signature of the cosmological constant term however can be misleading. It

retains same sign because the double sign change made during Euclideanization.

Since we are interested in the nonperturbative evaluation of the partition function,

the information about Lens space that suffices is its algebraic topology. This is given by 3

L(p, q) = S3/Zp. The physical phase space of this theory containing only flat connections,

is given by (hom : π1 (L(p, q))→ SU(2)) / ∼, (moduli space of flat SU(2) connections

modulo gauge transformations) where ∼ denotes gauge equivalence classes. For lens

space L(p, q), the fundamental group is isomorphic to Zp, which is freely generated by a

single generator, say α; ie the group consists of the elements {αn|n = 0, . . . , p− 1}. The

homomorphisms to SU(2), which we denote by h must satisfy h[αp] = (h[α])p = 1. In

3Role of q(modp) coprime to p comes through the action Zp : S3 → S3. This is most easily viewed by

considering S3 as unit sphere in C2 and specifying the Zp action as (z1, z2) 7→
(
e2πi/pz1, e

2πiq/pz2
)
.
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the defining representation (using the freedom of group conjugation) of SU(2), this gives

h[α] = e2πiσ3/p.

Hence the moduli space consists of only p distinct points and therefore can in no way be a

symplectic manifold. In physical terms these points represent holonomies of the p disjoint

non contractible loops around the p marked points on L(p, q).

In this connection we wish to emphasize that the configuration corresponding to n = 0

above, is unique to first order gravity only. It represents the holonomy of the connection

A(±) = 0 or its gauge equivalent class. This means that we are taking the e = 0 = ω

solution in our phase space. These configurations do not give rise to any physically

meaningful metric, as elucidated in [20]. But while doing non-perturbative quantization

of first order theory we must include them in the phase space.

4.3 Appropriate quantization

4.3.1 HT 2

That we have seen direct attempts to quantize the theory on L(p, q) fails, we should resort

to indirect means as exemplified in (4.1). In this respect we construct L(p, q) by gluing

two solid tori through their boundaries using an element of the mapping class group

U =

(
q b

p d

)
∈ SL(2,Z). (4.2)

The quantization strategy [112] as outlined in the introduction requires associating two

quantum Hilbert spaces of the CS theory with the boundary of the solid tori. We therefore

have to find HT 2 . This analysis should be identical for the compact conjugacy class of4

SL(2,R), which we worked out in 2.3.1. However there are some notational distinctions,

for which we present the quantization scheme briefly as follows.

Since we are quantizing CS theory on T 2 (the third dimension may be taken as R, the

whole 3 manifold being viewed as a trivial line bundle over T 2), we have as the starting

point, the moduli space : (hom : π1(T 2)→ SU(2)) / ∼.

4We also note that there is a single conjugacy class for SU(2).
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Now π1(T 2) = Z⊕Z and is a freely generated abelian group with two generators α, β

having the relation αβα−1β−1 = 1. Taking privilege of the group conjugacy as before we

take the 2 dimensional representation of the homomorphism maps as:

h[α] = eiσ3θ h[β] = eiσ3φ θ, φ ∈ [−π, π]. (4.3)

This endows the two dimensional moduli spaceM with the topology of T 2 (parameterized

by θ, φ). Note that this simple construction of M is motivated from the rigorous point

of viewing it as M = T × T/W , where T is the torus of maximal dimension (for SU(2)

which is 1 and T = S1) and W is the Weyl group with Ad action on the group. Our

strategy will be to first quantize T × T and then take Weyl invariant ‘parallel’ sections of

the line bundle on it.

The ‘pushed down’ symplectic structure on M is

ω =
k

2π
dθ ∧ dφ.

An appeal to Weil’s integrality criterion∫
M

ω

2π
∈ Z (4.4)

now assures that k must be an integer. At the stage of prequantization a prequantum line

bundle is chosen overM and before choosing the polarization for this line bundle we pick

a complex structure τ for M (induced by that on the surface of the solid torus). This

gives us the holomorphic coordinate: z = 1
π
(θ + τφ) on M. We re-express

ω =
ikπ

4τ2

dz ∧ dz̄.

We thus work with a Kähler structure on M and a line bundle on it with a connection

whose curvature is −iω. The rest of the prequantization technique can be analogously

constructed as given in [26]. This equips us with prequantized Hamiltonian functions

θ̂′ = − 2i
k+2

τ∂z + πz and φ̂′ = 2i
k+2

∂z. It is important to note the shift of k by the

dual Coxeter number of SU(2) to k + 2 which originates from the non-trivial Polyakov-

Wiegman factor [114] for non-abelian compact gauge groups. In a more rigorous fashion
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its appearance is explained due to non-anomalous connection construction on the Hilbert

bundle in [111], which guarantees finally the quantum Hilbert space to be independent of

the complex structure initially chosen for quantization.

We finally impose the quantization conditions on the polarized wavefunctions ψ(z) 5:

ei(k+2)mθ̂′e−i(k+2)nφ̂′ψ(z) = ψ(z).

This is solved by level r = k + 2 theta functions:

ϑj,r(z, τ) =
∑
n∈Z

exp

[
2πirτ

(
n+

j

2r

)2

+ 2πirz

(
n+

j

2r

)]
with j = −r + 1, . . . , r (since ϑj+2r,r(z, τ) = ϑj,r(z, τ)). We will now construct the Weyl

invariant subspace of this 2r dimensional vector space. Weyl invariance on M means

identifiction of z with −z 6. Observing that ϑj,r(−z, τ) = ϑ−j,r(z, τ) we project to the

Weyl-odd subspace consisting of the r − 1 = k + 1 vectors:

ϑ−j,r(z, τ) = ϑj,r(z, τ)− ϑ−j,r(z, τ) j = 1, . . . r − 1.

As per [111] one should now consider a ‘quantum bundle’ over the space of complex

structures τ with fibres as the Hilbert space we have just found. The physical states

should be parallel sections of this new bundle with respect to a projectively flat connection

of the ‘quantum bundle’. Those vectors turn out to be:

ψj,k(z, τ) =
ϑ−j+1,r(z, τ)

ϑ−1,2(z, τ)
j = 0, . . . k (4.5)

By taking the ratio of two Weyl-odd function we thus found the Weyl invariant vector

space as desired. This space is orthonormal and serves as the required Hilbert space.

4.3.2 Gluing and L(p, q)

We know that the mapping class group SL(2,Z) or rather SL(2,Z)/Z2 of T 2 is ‘generated’

by two modular transformation elements T, S. Any general element U of SL(2,Z) can be

5the apparent operator ordering ambiguity is unphysical, costing only up to a phase in the wavefunction
6this is so because the traces of the holonomies (4.3) are gauge invariant rather than h[α], h[β] them-

selves and the traces do not distinguish between (θ, φ) and (−θ,−φ). This is another statement of Weyl

invariance.
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expressed as

U = S
t−1∏
s=1

(TmsS) .

In its 2 dimensional representation U produces L(p, q) by gluing two solid tori for [115]

U =

(
q b

p d

)
The above representation of U in terms of T, S implies the following identity [112]:

p/q = −mt−1 +
1

mt−2 −
1

· · · − 1

m1

(4.6)

The Chern-Simons-Witten invariant or the partition function is given by [3],

Z(r)L(p,q) = 〈ψ0,k|U |ψ0,k〉

and it is independent of the parameters b, d [112]. From the knowledge of action of S and

T on theta functions we can evaluate these matrix elements. In the canonical 2-framing

this was evaluated to be

Z(r)L(p,q) = − i√
2rp

exp (6πis(q, p)/r)
∑
±

p∑
n=1

exp

(
2πiqrn2

p
+

2πin(q ± 1)

p
± πi

rp

)
(4.7)

where s(q, p) =

p−1∑
l=1

l

p

(
lq

p
−
[
lq

p

]
− 1

2

)
is the Dedekind sum defined in terms of the floor function [ ].

4.3.3 Sum over topologies and finiteness of the partition function

We note from the construction of HT 2 (4.5) that the dimension of the Hilbert space

is r(±) − 1 corresponding respectively to the ’+’ type and ’-’ type CS sectors. This is

meaningful only when r(±) − 1 ∈ N (excluding zero). These conditions come out to be

stringent and restrict the parameters of the theory. Since r(±) − 2 = k(±) =
l(1/γ ± 1)

8G
,

we have (when ~ and c are restored suitably) 7 the following restrictions

a :=
l

8lp
= s/2 s ∈ N and γ =

a

(a− 1) + t
t ∈ N. (4.8)

7lp is the three dimensional Planck length lp = G~/c3



Chapter 4. Finite 3D de-Sitter Gravity 77

These restrictions are the prototypes of any topological field theory [116]. One may

be tempted to compare these with those appearing in [20] for k(±), where the unequal

CS parameters are prescribed with discrete values in context of gravity. The apparent

difference is due the choice of a different background topology used in [20].

These nontrivial restrictions which validate the quantization (through positivity of the

dimension of the Hilbert space) does not allow γ →∞ which was again the starting point

of the ordinary theory (1.1). It is also interesting to see that the set of allowed value of

γ also includes 1, the ‘chiral’ point for t = 1. This motivates us strongly to study the

corresponding Chiral limit of the underlying dual-CFT, if any.

Leaving those issues for later discussion we now return to our original problem and

express the gravity partition function (henceforth by gravity partition function we mean

the partition function for the first order gravity ) as the product of the partition functions

of ‘+’ type and the ‘-’ type theories (1.7):

ZGrav
L(p,q) = Z(r(+))L(p,q)Z(r(+))L(p,q) (4.9)

Full gravity partition function would on the other hand be stated after summing over all

topologies ie

Ztot =
∞∑
p=1

∑
q(modp)
(q,p)=1

ZGrav
L(p,q)

This final sum is where one encounters the divergence as explained in [108] through sums

of kind
∑

q(modp)
(q,p)=1

1 = φ(p), the Euler totient function. For the purpose of comparison with

[108] and study the convergence property of our partition function we choose a particular

classical saddle for which the sum over n in (4.7) is replaced by a particular value of

n = q±1
2

respectively for the ‘+’ and the ‘-’ type theory instead of taking the corresponding

sum in (4.9). In order to bring in clarity further simplification is made through assuming

a to take only integral values and a/γ ∈ 2N. However these simplifications do not alter

the final convergence properties of the sum. Using (4.7) in a more illuminating form 8 we

8Let A be the set of all such integers q(modp) with (q, p) = 1. It is easy to see that {q∗(modp)|qq∗ =

1(modp)} = A. This property has been used.
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have explicitly:

Ztot = − 1

2
√
r(+)r(−)

∞∑
p=1

1

p

∑
q(modp)
(q,p)=1

exp (6πis(q, p)/R+) exp

(
πi

p
(2a+ (q + q∗) (a/γ + 2))

)
×

[
e

πi
pR+

+ 2πi
p

(q+1)
+ e

− πi
pR+

+ 2πi
p

(q−1) − e
πi
pR−

+ 4πi
p − e

−πi
pR−

]
(4.10)

where
1

R±
=

1

r(+)

± 1

r(−)

It is now easy to see that all the terms in the q summand are q dependent and the

divergence producing totient function does not occur. However since no closed form of

the q sum is available, for the purpose of explicit checking we go to the limit where γ > 0

is small (� 1). Since the coupling constants become effectively large in this limit the

partition function contains the expressions up to one loop. From (4.8) one observes that

this limit is consistent with our quantization program by fixing a and pushing the integer

t large. In this limit
1

R+

∼ 2γ

a
and

1

R−
∼ 2γ2

a
are both small. Out of the γ terms

appearing as polynomials in the exponentials of (4.10) ie,
1

γ
, 1, γ, γ2 we keep

1

γ
, 1 and

neglect the last two. This implies

Ztot = −γ
a

(
1− 2γ

a

) ∞∑
p=1

1

p
e

2πia
p cos(2π/p)

[
S(

a

2γ
+ 2,

a

2γ
+ 1; p)− e

2πi
p S(

a

2γ
+ 1,

a

2γ
+ 1; p)

]
(4.11)

S(α, β; p) =
∑

q(modp)
(q,p)=1

exp (2πi(αq + βq∗)/p)

Expanding the exponential and the cosine functions in the inverse power of p we obtain

an infinite series of Kloosterman zeta functions defined by

L(m,n; s) =
∞∑
p=1

p−2sS(m,n; p).

Kloosterman zeta function is again analytic in the region <s > 1/2.

Now, as we are in the small γ regime, the summand in (4.11) can well be approximated
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as
∞∑
p=1

1

p
e

2πia
p cos(2π/p)

(
1− e

2πi
p

)
S(

a

2γ
,
a

2γ
; p)

=
∞∑

m,n,r=0

(2πi)r+n+2m+1

r + 1

an

(2m)!n!r!

∞∑
p=1

p−(r+n+2m+2)S(
a

2γ
,
a

2γ
; p)

=
∞∑

m,n,r=0

(2πi)r+n+2m+1

r + 1

an

(2m)!n!r!
L(

a

2γ
,
a

2γ
;
r + n+ 2m

2
+ 1) (4.12)

The good news is that we get a series of L( a
2γ
, a

2γ
; s) with s ≥ 1. Hence the partition

function is free from divergences. Had we set a/γ + 2 = 0, the second Kloosterman sum

would have reduced to the totient function. That is a potential source of singularity,

which is obvious since its zeta function is expressed in terms Riemann zeta function and

ζ(1) is singular. We again see that the finiteness of the parameter γ saves us from having

a meaningless quantization.

Here we wish to point out that we are evaluating the partition function in the case

of small γ. This again corresponds to large CS couplings k((±)). However quantum CS

theory dictates that large coupling means first quantum correction [112]. In that sense

(4.11) or (4.12) corresponds to one loop result.

4.4 The metric counterpart and the TMG story

The key relation connecting the first order formalism and metric regime is : 〈eµ, eν〉 = gµν .

It should be supplemented with the torsionless condition ensuring the geometry to be

Riemannian. If one starts with the action (1.7), one gets this condition (1.3) as an equation

of motion. Solving this equation makes (1.9) the well known gravitational Chern Simons

and (1.1) the Einstein Hilbert action provided we use only the invertible subset of vielbeins

from (1.3). The action (1.7) becomes TMG with γ playing the role of topological mass.

It is not surprising that dynamics of TMG and that of (1.7) are quite different; including

equations of motion and canonical structures. The most important feature perhaps is

that TMG has local degree of freedom which is absent in the theory described by (1.7)

and one should not expect similarity in their quantum theories. However TMG being the

closest kin to our theory in metric version, for a completion we present a comparative
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study with quantum TMG focussing its convergence properties as worked out in detail

in [109].

To be more precise, we first focus on what is meant by quantum dS TMG. This issue,

as we have already mentioned, has been exhaustively studied in [109]. The one loop

partition function is showed there to converge. Denoting by E, the contributions coming

from pure Einstein Hilbert theory with cosmological constant and by MG, the ones coming

from massive graviton modes, they show that:
∞∑
p=1

∑
q(modp)
(q,p)=1

Z
(0)
E Z

(0)
MGZ

(1)
E ∼

∞∑
r=0

(2πa)r

r!
L(

a

2γ
,
a

2γ
;
r

2
+

1

2
) + trivially analytic terms. (4.13)

One can now compare this with (4.12). The interesting fact is that here the term corre-

sponding to r = 0 in the sum of the RHS is the source of divergence since it corresponds

to Kloosterman zeta function with s = 1/2. But it is also showed in [109] that when one

includes Z
(1)
MG as the product and then performs the sum over p, the divergence is eaten

up. This means that up to one loop calculation they have

Z =
∞∑
p=1

∑
q(modp)
(q,p)=1

Z
(0)
E Z

(0)
MGZ

(1)
E Z

(1)
MG.

The expression of Z
(1)
MG as given in [109] is far too complicated for the above expression to

be analytically simplified and compared with (4.12). But the mechanism through which

the divergence in the above expression is controlled by Z
(1)
MG is very similar to the way we

showed (4.12) to be finite. In essence both our topological theory of gravity and TMG

(dynamical) have finite and similarly convergent partition functions. Since these theories

are classically different this fact seems to be quite surprising. That TMG is derived as a

metric version of our theory may however qualitatively explain this similarity in partition

functions up to one loop. We conclude that although the finiteness of TMG could be

ascribed to its propagating graviton modes , our theory (1.7), being devoid of massive

gravitons still yield a reasonably similar convergent partition function.

4.5 Conclusion

The take home message of our analysis can be summarized as follows :
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1. Construction of the associated Hilbert spaces on the torus surfaces is correct only

for finite γ. These constructions spell out the set of allowed values of γ and this

does not include γ →∞.

2. That finite values of γ can make the partition function divergence free is shown

explicitly for γ � 1. This is most important from point of view of the quantization

of lens space gravity.

The fact that pure Einstein gravity has divergent partition function even at one loop

and TMG is finite may seem to be a lucrative point of discussion in context of the work

we present here. One can pass over to TMG (essentially dynamical) from action (1.7),

which is topological, by imposing the torsionless condition. Hence they share the same

parameter content. In the AdS sector however, this similarity is more pronounced as

they have same dual CFTs. Whereas in present case, such an analogy is premature, since

dual CFT in 3D de Sitter gravity is yet to be understood. Any progress in this front

would surely shade light on the proposed dS/CFT [117] correspondence (which works in

4 dimensions) in 3 dimensions and on its gravitational interpretation.

On the other hand, the finiteness brought in by the gravitational Chern Simons term

of TMG also may be interpreted in light of (1.7). This being parity odd, there are phases

in the partition function. Control of the divergence can be ascribed to this fact. This

explanation works in the perturbative regime for TMG at least, as shown in [109]. Our

result being finite is in conformity with TMG.

Another point of interest which we leave for future study is the interpretation of the

theory when γ → 1. In the AdS paradigm an analogous point in parameter space has

been shown to have critical CFT dual [50, 118]. In light of the proposed dS/CFT [117]

framework this may serve as an exciting evidence for dual critical CFT.



4D Gravity

82



Chapter 5

Black Hole Entropy in 4 dimensions

Till now, we have been talking about 3d quantum gravity. As promised in the introduc-

tion, we would now be working with 4d gravity. The theme of this thesis is emergence of

Chern Simons theory in the quantum gravity perspective, which was observed closely in

the first part of this work. In this light, we should expect CS to again act as a useful tool

in 4d context. It is not hard to assume that we need again the first order formulation of

gravity here in order to see how Chern Simons theory uncovers. As have been outlined

earlier in 0.3.3, CS appears as an effective theory of gravitational interactions on a 3d

submanifold of the 4 dimensional space-time. That submanifold actually is a boundary,

more precisely an isolated horizon, which has again been discussed in chapter 3 in 3d

gravity context. It can be thus expected that we would be talking mainly about quantum

degrees of freedom describing a black hole horizon. Two immediate questions now crop

up in ones mind. Firstly, which quantities do we want to calculate, given that we have a

well known theory (CS) that describes horizon dynamics and why will that be important?

Secondly, here CS is only restricted on the boundary itself. Bulk dynamics should not be

ignored, since horizons are not decoupled from space-time manifolds. In this sense, how

will the quantum theory of bulk 4d gravity be accounted for? Answer to the first question

involves black hole entropy calculation in the micro-state counting approach, and will be

explained in the following section. In connection to the second question, we keep in mind

that no completely robust theory of 4d quantum gravity is available till date. However

the framework of Loop Quantum Gravity (LQG) comes to be helpful in the scenario of

black hole entropy evaluation. The main result we use from LQG, involving spectrum

of area operator is kinematical (does not involve quantization of dynamical issues) and

83
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is unambiguous. Hence in this chapter we would first display the classical dynamics of

the bulk theory and after that, will brief the important result of LQG which would be

relevant for black-hole entropy calculation presented in the next chapters of the thesis.

5.1 Black hole entropy

Formation of black holes from collapse of matter and radiation under gravitational pull

is an involved topic in astrophysics and we don’t have rather the scope of discussing that

phenomenology in this thesis. However we start with a relativist’s point of view, which

perceives black holes as some special solutions of general relativity. With the risk of being

non-rigourous, we define black holes as regions of space-time bounded by a two-surface for

each spatial foliation. Adding to that, the two-surfaces should not allow any information

come out of it. This particular feature seems peculiar in terms of known physics and

calls for ascribing the notion of entropy to black hole horizons [119] (the surface that

‘hides’ information of the black hole). This entropy should be function of macroscopic

parameters of the black hole horizon only (for example mass, electromagnetic charge

among others). It is Hawking’s work on radiation from black hole horizon [120], which

associated a temperature to the horizon. This, along with the striking analogy between

laws of horizon dynamics and those of thermodynamics gave the formula for entropy as:

SBH =
kBA

4l2p
, (5.1)

where A, kB,& lp are respectively the horizon area, Boltzmann constant and the Planck

length. Since the establishment of this formula, the question about its microscopic origin

has been alluring theoreticians, particularly those working on a theory of quantum gravity.

In this view, it is a very stringent demand from any candidate theory of quantum gravity to

describe the quantum degrees of freedom which account for this entropy from a statistical

mechanics point of view.

There are a large number of approaches addressing the above issue. Many do rely upon

semi-classical techniques and can reproduce (5.1). Semi-classical studies can produce

this result for black-holes with large (as compared to the Planck area) horizon area.

Corrections to this formula, if any, is therefore expected from any truly quantum theory.
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Euclidean quantum gravity [121] calculations in this direction have been proven to be

good candidates, which added corrections logarithmic in the horizon area. There are also

a large volume of work done in string theory literature (see [122] and references therein)

which also provided similar results from microscopic calculations. These however mostly

apply for extremal black holes. In the framework of LQG, it is interesting to see if such

corrections do arise or not. (5.1) was checked in the regime of LQG [123] successfully.

It was immediately followed by the computations [25,124] and the issue of black-entropy

correction upto logarithmic order was well settled more than a decade ago. However it is

due to a more recent resurgence concerning the topic in LQG regime that we have started

working in this direction during the period of this thesis. This upsurge is regarding a

very subtle issue about the coefficient of the logarithmic correction that one gets in LQG

calculation. We would be discussing that later in the next two chapters. This chapter

and the next one will be used for making up the stage for that computation.

5.2 A very brief summary of LQG

In this section, we would describe the classical phase space of first order gravity with the

Barbero-Immirzi (BI) parameter, which is aimed to be quantized in the programme of

LQG. In doing so, we note that this formulation of gravity essentially casts it into a theory

consisting of dynamics of connections, ie, a gauge theory (except that we don’t have a fixed

background manifold now). The immediately next step is to construct a kinematical set-

up for the quantum theory and to analyse spectra of geometrical importance. Materials

upto this consist of what we require for the entropy calculation, we would briefly remark

on LQG dynamics.

5.2.1 Classical phase space

There is a large number of excellent pedagogical reviews and books on the subject includ-

ing: [60,63,125] among others. The starting point of the LQG programme is the Palatini

action augmented by a topological term (introduced by Hölst [42]):

S =
1

4k

∫ (
εIJKLeI ∧ eJ ∧ FKL −

1

2γ
eI ∧ eJ ∧ F IJ

)
(5.2)
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where e is the SL(2,C) tetrad (frame) field and F is the curvature of the frame-connection

one-form ωIJa (in suitable natural units. Newton’s constant is captured with suitable

constants in k). The γ constant (non-zero real) however appeared earlier through the

analysis of Barbero [126] and Immirzi [127] while they were looking for real connections for

canonical gravity (hence known as Barbero-Immirzi parameter commonly) which would

replace Ashtekar’s complex (half-flat) ones [128]. 1

The γ augmented term being of topological nature does not alter equations of mo-

tion. Moreover the covariant phase space and the (pre)symplectic structure on it are

independent of γ. It only induces canonical transformation on the phase space.

In order to study the canonical structure, we first choose a foliation of the space-time

as M ×R. As is usual in any canonical formalism, it is required to have a time-like vector

field which is related to the normal ña to M at each foliation (through the lapse scaling

and shift vector). Moreover the internal time-like vector field ñI := eIañ
a is fixed, such

that

ñI ñJη
IJ = −1 (5.3)

(η is the Lie algebra metric). This choice partially fixes the local Lorentz gauge invariance

to SU(2) (which is the little group of SL(2,C) with respect to a ‘time-like’ direction). ña

and ñI will respectively be used as projection operators to tangent spaces associated with

points on M and into the obvious (space-like) subspace of the frame vector-space. From

now on we will use Greek letters for spatial indices and lower-case Roman for frame space

indices.

With this understanding of notation, we redefine our basic dynamical variables:

Pα
i =

1

2kγ
ejβe

k
δε
αβδεijk and Aiα =

1

2
εijkω

jk
α + γωi0α (5.4)

where εαβδ represents the volume 3-form on M . Next we identify A as the configuration

variable and P its conjugate momentum:

{Aiα(x), P β
j (y)} = δijδ

β
αδ(x, y) (5.5)

1Interestingly, one should be made aware that the γ → ∞ limit, which gives the standard first order

(Palatini) theory fails to retain the manifest connection dynamics, once canonical analysis is performed.
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What remains in the completion of the classical dynamics is the set of constraints. As

is expected for a diffeomorphism invariant theory, the Hamiltonian that generates time

translation, is a combination of first class constraints. Following are the constraints of

the theory:

Gauss: Gi = ∂αP
α
i + εij

kAjαP
α
k (5.6a)

Diffeomorphism: Cα = P iβFiαβ (5.6b)

Hamiltonian: C =
[
γ2F i

αβ − (1 + γ2)εijkK
j
αK

k
β

] εilmElαEmβ√
|det(γE)|

(5.6c)

Note that the third constraint contains the variable Ki
α = 1

γ
(Aα − 1

2
εijkω

jk
α , where the

second term in Ki
α can be expressed as a degree-zero rational of polynomials of P i

α and

its derivative (thanks to the projected part of the torsion-less equation of motion).

Key feature of the constraints displayed above is that all of them are first class and

there are no more constraints in the system. The first one, aptly named Gauss constraint,

generates SU(2) gauge transformation in the frame space. On the other hand the second

one is responsible for the infinite number of diffeomorphisms on M . The last or the

Hamiltonian constraint generates diffeomorphism off M . A combination of these three sets

do generate required time translation, which is the Hamiltonian of the system. Also note

that the algebra of these constraints contains structure ‘functions’ instead of constants.

5.2.2 Quantum theory: Kinematics

The quantization strategy for the above theory of connections is drastically different from

the standard gauge theory quantization where a fixed background is known. The LQG

program aims towards a non-perturbative canonical quantization without a fixed back-

ground, where a Hilbert space of states is constructed. Action of physical observables

and constraints on this Hilber space is studied. First non-triviality that one comes across,

while proceeding in this direction, is due to the fact that it is an infinite dimensional

system (as opposed to finite dimensional quantum mechanical systems, where canonical

quantization is very well understood). The key to handle this uncountably infinite di-

mensional classical configuration space (of connections) is by using finite sets of probes

(analogous to discrete integral transforms), probing the field variables. Finally using
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arbitrary sets of probes, the requirements of infinite degrees of freedom are met.

To be more concrete, we demonstrate the scheme to study the dynamics. The probes

that come to one’s mind for a theory which has gauge connections are obviously holonomies.

In this case one starts with a graph Γ in M with finite number of edges (e1, e2, . . . en) and

vertices (v1, v2, . . . vk). The holonomies are constructed on the edges. Aiming for a quan-

tum Hilbert space of states, one then constructs the following functions on the infinite

dimensional configuration space of connections using the graph as a probe:

Ψ = ψ(he1(A), he2(A) . . . hen(A)).

These functions are called ‘cylindrical’ with respect to the particular graph Γ. Here hei(A)

is the holonomy of A on the edge ei and is SU(2) valued. This implies that Ψ functions

are functions on SU(2)n group manifold. If one wants a Hilbert space structure on the

space of these cylindrical functions one imposes a measure induced by the SU(2) Haar

measure. Uniqueness of this Hilbert space metric is again guaranteed by demanding

background-independence of the theory.

While constructing the Hilbert space of such functions, the use of results from har-

monic analysis, particularly the Peter-Weyl theorem is made. The Hilbert space is then

decomposed as a direct sum of irreducible representations of SU(2). Consequently, asso-

ciation of representations of SU(2) with each edge become evident. These representations

at edges are again constrained due to the ‘Gauss law’ (5.6) holding at each vertex through

angular momentum addition. These states, named aptly as spin-network states form the

kinematical Hilbert space, on which the Gauss constraint is already imposed. Finally,

through refining graphs by adding more edges, the infinite dimensionality of the configu-

ration space is captured.

5.2.3 Spectrum of geometric operators

The most important operator in relation to our study in black hole entropy calculation is

the area operator. Consider a two dimensional surface embedded in M . For simplicity it

can be taken as an open disk D. Classical area of it is:

AD = 8πGγ

∫
D

√
P i
αP

α
i .
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Its quantization requires the action of the triad operators P on the kinematical spin-

network states described above. Without going into the detail of the regularizing method,

we present the result. Any spin-network state associated with a graph is eigenstate of the

quantum operator AD. The spectrum is given by:

AD,Γ = γl2p
∑
e∩D 6=∅

√
je(je + 1). (5.7)

Here Γ is the graph, on which the spin-network state is supported, e runs over its edges

and lp is the 4d Planck length. Evidently, je is the half-integer defining SU(2) irreducible

representation identified with the edge e. Interestingly, the spectrum is discrete and

there exists a finite ‘area-gap’ of γl2p, comparable to the ‘mass-gap’, expected in any

non-perturbative theory of QCD.



Chapter 6

Local Symmetries of Weak Isolated Horizons

6.1 Introduction

In this brief chapter we explore local symmetries of a non-expanding horizon (NEH) in the

first order formulation of gravity. The objective is to establish the stage for the ambitious

project of black-hole entropy calculation in quantum gravity framework, which will be the

subject matter of the next chapter.

For a detailed definition of NEH see [23, 96]. For our present purpose it is sufficient

to characterize NEH to be a light-like hyper-surface ∆ imbedded in space-time such that

the unique (up to scaling by a function) light-like, real vector field l tangential to ∆ is

expansion, shear and twist-free. Since l is also normal to ∆, it is geodesic as well. These

properties of ∆ are independent of the scaling of l [23,98]. Let us further assume that ∆

is topologically equivalent to S2 × R where S2 is a 2-sphere. It is thus clear, that NEH

by definition consists of more general structures than weak isolated horizon discussed in

the context of 3d gravity in chapter 3 of this thesis.

In the first order formulation Einstein’s theory of gravity is invariant under the local

Lorentz group SL(2,C) apart from diffeomorphisms. Here our specific interest is primarily

to find out the residual local symmetry of NEH, that is allowed by the boundary conditions

on it. Then based on the residual gauge group we wish to propose an effective theory

on the horizon whose subsequent quantization would yield the quantum states of a black

hole.

As we have been discussing in the introduction of the last chapter, there is a recent

90
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upsurge of interest in such effective theories. Lately an SU(2) Chern-Simons 1 theory has

been proposed [129], (which was however used successfully long time back in [124], [25])

as the effective quantum theory on the horizon in contrast to a U(1) theory proposed

in [24, 64, 123]. Here comes the point of conflict between the two approaches. The quan-

tum theories starting with SU(2) and U(1) invariances respectively give the logarithmic

correction to (5.1) with different coefficients, namely -3/2 and -1/2.

In the canonical formulation of loop quantum gravity one gauge fixes the full Lorentz

group to its rotation subgroup SU(2) and the canonical theory reduces to a SU(2) gauge

theory. This is the main reason for expecting that a SU(2) gauge theory (expectedly

a topological one) should play a role as the effective theory on the horizon in this case

[25, 130–134]. In the present work we do not gauge fix the theory a priori to SU(2).

Rather we consider full SL(2,C) gauge invariance in the bulk. Kinematical and dynamical

implications of the boundary conditions of NEH then forces the left-over symmetry on

the NEH to be U(1). These results are all in the classical regime. However, in the next

chapter we will show how SU(2) invariance comes about inevitably at the quantum level.

it Note: that one of the Newmann-Penrose coefficients is named γ customarily. In order

to avoid confusion with the Barbero-Immirzi parameter, which is also usually denoted by

the same letter, we add a suffix B to the later in this chapter. This chapter closely follows

the work done in [135].

6.2 Kinematics

First, let us see how a NEH ∆ reduces the local Lorentz symmetry. We will be using

the Newman-Penrose formalism for this purpose. This was exhaustively used in chap-

ter 3 for 3d gravity. The Newman-Penrose connection coefficients for 4-dimensions are

more involved and are discussed in great detail in textbooks like [136]. The vector-field

congruence l being expansion, shear and twist-free, certain Newman-Penrose coefficients

κNP, ρ, σ vanish on ∆; κNP vanishes because the null-normal l is a geodesic vector field, ρ

vanishes because the expansion of l vanishes and σ vanishes because l is shear-free also.

1The use of SU(2) Chern-Simons theory as a boundary theory to derive black hole entropy has a

precedence: independently, Krasnov, Rovelli and Smolin (cited in [124]) have considered this possibility,

although not using the Isolated Horizon paradigm.
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These conditions are satisfied only on ∆. However, the Newman-Penrose coefficients are

sensitive to the local Lorentz transformations [136]

l 7→ ξl, n 7→ ξ−1n,m 7→ m, (6.1)

l 7→ l, n 7→ n,m 7→ eiθm, (6.2)

l 7→ l, n 7→ n− cm− c̄m̄+ cc̄l,m 7→ m− c̄l, (6.3)

l 7→ l − bm− b̄m̄+ bb̄l, n 7→ n,m 7→ m− b̄n, (6.4)

where ξ, θ, c, b are smooth functions on ∆. Under (6.1), (6.2) and (6.3), κNP, ρ, σ transform

respectively as

κNP 7→ ξ2κNP, ρ 7→ ξρ, σ 7→ ξσ (6.5)

κNP 7→ eiθκNP, ρ 7→ ρ, σ 7→ e2iθσ (6.6)

κNP 7→ κNP, ρ 7→ ρ− c κNP, σ 7→ σ − c̄ κNP. (6.7)

Since they transform homogeneously, their vanishing remain invariant under (6.1)-(6.3).

However, under (6.4) they transform inhomogeneously

κNP 7→ κNP − b̄ρ− bσ + |b|2τ + 2b̄2α + 2|b|2β

− 2b̄|b|2γ − 2b̄ε− b̄|b|2(µ− µ̄) + b̄2|b|2ν

+ b̄2π − b̄3λ+Db̄− bδb̄− b̄δ̄b̄+ |b|2∆b̄

ρ 7→ ρ− bτ − 2b̄α + 2|b|2γ − b̄|b|2ν + b̄2λ+ δ̄b̄− b∆b̄

σ 7→ σ − b̄τ − 2b̄β + 2b̄2γ − b̄3ν + b̄2µ+ δb̄− b̄∆b̄ (6.8)

where D = ∇l, ∆ = ∇n, δ = ∇m and δ̄ = ∇m̄. Clearly, the NEH boundary conditions

are satisfied if and only if b = 0.

Let us now study the generators of these Lorentz transformations in detail. The

Lorentz matrices associated with the transformations (6.1)-(6.3) are respectively

ΛIJ =− ξlInJ − ξ−1nI lJ + 2m(Im̄J), (6.9)

ΛIJ =− 2l(InJ) + (eiθmIm̄J + c.c.), (6.10)

ΛIJ =− lInJ − (nI − cmI − c̄mI + |c|2lI)lJ
+ (mI − c̄lI)m̄J + (m̄I − clI)mJ (6.11)
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and the corresponding generators are respectively

BIJ = (∂ΛIJ/∂ξ)ξ=1 = −2l[InJ ], (6.12)

RIJ = (∂ΛIJ/∂θ)θ=0 = 2im[Im̄J ], (6.13)

PIJ = (∂ΛIJ/∂Re c)c=0 = 2m[I lJ ] + 2m̄[I lJ ], (6.14)

QIJ = (∂ΛIJ/∂Im c)c=0 = 2im[I lJ ] − 2im̄[I lJ ], (6.15)

where B,R generate (6.1) and (6.2) respectively and P,Q generate (6.3). A straightfor-

ward calculation gives their Lie brackets

[R,B] = 0, [R,P ] = Q, [R,Q] = −P,

[B,P ] = P, [B,Q] = Q, [P,Q] = 0, (6.16)

where [R,B]IJ = RIKB
K
J − BIKR

K
J and so on. This is the Lie algebra of ISO(2) n R

where the symbol n stands for the semidirect product; R,P,Q generate ISO(2) and B

generates R.

The complexified Lorentz algebra is isomorphic with sl(2,C), which is generated by

three elements {σ3, σ±} such that [σ3, σ±] = ±2σ± and [σ+, σ−] = σ3. Its Borel subalgebra

is generated by {σ3, σ+}, which is isomorphic with (6.16). Explicitly, [137]

P = iσ+, Q = σ+,

R = iσ+ −
i

2
σ3, B = −σ+ +

1

2
σ3. (6.17)

It is an elementary exercise to show that P,Q,R,B, as defined by (6.17), are linearly

independent in the field of real numbers. Clearly, the NEH boundary conditions are

invariant only under this subgroup of the local Lorentz group. We should keep note of the

fact that the group ISO(2)nR is non-semisimple; its Cartan-Killing metric K is doubly

degenerate

K =



R B P Q

−2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

. (6.18)
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Let us consider the Palatini connection ωIJ and in the interior of the spacetime let us

expand ωIJ in the internal Lorentz basis

ωIJ =− 2Wl[InJ ] + 2Vm[Im̄J ] + 2(N̄n[ImJ ] + c.c.)

+ 2(Ūl[ImJ ] + c.c.) (6.19)

where W,V,N,U are connection 1-forms; as defined, W is real, V is imaginary and N,U
are complex (in all, there are six of them associated with the six generators). For the rest

of our analysis we will fix an internal Lorentz frame for which lI , nI ,mI , m̄I are constants.

However, our results will be unaffected by such a choice.

The pull-back of the Palatini connection to the NEH ∆ is of the form

ω←−IJ , −2Wl[InJ ] + 2V m[Im̄J ] + 2(Ū l[ImJ ] + c.c.) (6.20)

where W,V, U are respectively the pull-backs of W,V,U. Clearly, the 1-form N , which is

the pull-back of N, vanishes on ∆ by the NEH boundary conditions. Proof: The simplest

way to show this is to relate the connection 1-forms to the Newman-Penrose coefficients

(the constant lI , nI ,mI , m̄I basis simplifies these relations):

W =−(γ + γ̄)l − (ε+ ε̄)n+ (α + β̄)m+ (ᾱ + β)m̄ (6.21)

V = −(γ − γ̄)l − (ε− ε̄)n+ (α− β̄)m+ (β − ᾱ)m̄ (6.22)

U = −ν̄l − π̄n+ µ̄m+ λ̄m̄ (6.23)

N = τ l + κNPn− ρm− σm̄. (6.24)

So only four independent connection 1-forms W,V, U survive on ∆. This is consistent

with our earlier result that the residual gauge group on ∆ is ISO(2) n R that has only

four generators. However, below we present an independent analysis for the connection

to prove this.

Under the local Lorentz transformations (6.1)-(6.4) the Palatini connection (6.19)

transform as

ωIJ 7→ ΛI
KωKLΛJ

L + ΛIKdΛJ
K (6.25)

where ΛIJ are the associated Lorentz matrices (6.9)-(6.11) for (6.1)-(6.3) and for (6.4)

ΛIJ =− (lI − bmI − b̄m̄I + bb̄nI)nJ − nI lJ
+ (mI − b̄nI)m̄J + (m̄I − bnI)mJ . (6.26)
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A lengthy but straightforward calculation shows that under the Lorentz transformations

(6.9)-(6.11) the connection 1-forms transform as

W 7→W− d ln ξ,V 7→ V,U 7→ ξU,N 7→ ξ−1N. (6.27)

W 7→W,V 7→ V− idθ,U 7→ e−iθU,N 7→ e−iθN. (6.28)

W 7→W− cN− c̄N̄,V 7→ V− cN + c̄N̄,

U 7→ U− dc̄+ c̄(W− V)− c̄2N̄,N 7→ N. (6.29)

Since N transforms homogeneously, its pull-back N , 0 in one frame implies that it van-

ishes in all Lorentz frames related by (6.9)-(6.11). However, under (6.26), the connection

1-forms transform as

W 7→W + bU + b̄Ū,V 7→ V− bU + b̄Ū

U 7→ U,N 7→ N + db̄− b̄(W + V)− b̄2Ū. (6.30)

Clearly, in this case N , 0 if and only if b satisfies the equation db , b(W−V +bŪ) =: bY

where Y is a 1-form. This equation has a nontrivial solution if and only if Y is a closed 1-

form. However, we show that the equation admits only the trivial solution, b = 0. Proof:

Since b is a constant in the phase space of a NEH, it is sufficient to show that Y is not

closed for one specific NEH. Consider for example the event horizon of the Schwarzschild

solution. In units G = 1 and in advanced Eddington-Finkelstein coordinates

W =
1

4M
dv, U = − 1√

2
(dθ + i sin θ dφ),

V = −i cos θ dφ. (6.31)

As a result, dV and dU are proportional to the 2-sphere area 2-form and dW = 0.

However, since Y depends on b, one can ask is there any b for which dY , 0? The answer

is explicitly verifiable and one easily finds that dY , 0 if and only if b = 0. Since Y is

not closed, acting d once more on the equation db = bY one gets

0 = db ∧ Y + b dY = bY ∧ Y + b dY = b dY, (6.32)

which yields the unique solution b = 0. This shows that the connection (6.20) is indeed an

ISO(2)nR connection. Here we wish to remark that one could also arrive at (6.27)-(6.30)
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directly using the relations (6.21)-(6.24) and the appropriate Lorentz transformations of

the Newman-Penrose coefficients [136].

It is to be noted that unlike the Palatini connection, the Hölst connection AIJ :=

ωIJ − 1
2
γBεIJ

KLωKl, where γB is the Barbero-Immirzi parameter, does not transform as a

connection under any of the local Lorentz transformations (6.1)-(6.4). We also note that

under pull-back to any spatial slice M and imposing the time gauge (5.3) makes it the

Barbero-Immirzi connection depicted in (5.4).

For later convenience we expand (6.20) in the basis (6.12)-(6.15) of the Lie algebra

iso(2) nR:

ω←−IJ = 2ωBBIJ + 2ωRRIJ + 2ωPPIJ + 2ωQQIJ (6.33)

where 2ωB = W , 2ωR = −iV , 2ωP = −ReU and 2ωQ = ImU . The connection 1-forms

ωB, ωR, ωP , ωQ will turn out to be more useful in the context of the effective Chern Simons

theory on the horizon.

6.3 Dynamical implications

Let us now turn our attention to the pre-symplectic structure of the theory. We can derive

it following the very same approach employed in 3.3.4 starting from the Hölst action (5.2)

(in suitable units and eI is the spacetime tetrad 1-form)

J(δ1, δ2) = −1

4
Tr (δ1(e ∧ e) ∧ δ2ω − (1↔ 2)) . (6.34)

We also mention, that the canonical phase space version of it is (5.5), appended with the

constraints 5.6. The trace involves the sl(2,C) Cartan-Killing metric. The expansion of

the tetrad in the null tetrad basis is eI = −nlI − lnI + mm̄I + m̄mI . So the two-form

eI ∧ eJ pulled back onto ∆ and expanded in the iso(2) nR basis is given by

e←−
I ∧ e←−

J , 2εRIJ + Re(n ∧m)P IJ − Im(n ∧m)QIJ (6.35)

where 2ε = im∧m̄ and left arrows under e denotes its pull-back to ∆. Now the symplectic

current (6.34) is a closed space time 3-form d J = 0. Integrating d J over M we find that
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i
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M_

M+

S+

MS
∆

∆

S_

Figure 6.1: M± are two partial Cauchy surfaces enclosing a spacetime region M and

intersecting ∆ at the two 2-spheres S± respectively such that they extend to spatial

infinity io. M is any intermediate partial Cauchy slice that intersects ∆ at S∆

the sum-total contribution of the symplectic current from the boundaries of M must

vanish (FIG.1) ∫
M+∪M−∪∆∪i0

J(δ1, δ2) = 0 (6.36)

We assume that the boundary conditions at infinity are such that the contribution of

i0 to the integral (6.36) vanishes. We must also ensure that the symplectic structure is

independent of the choice of our foliation by the partial Cauchy slices. Using (6.33) and

(6.35), and that fact that the trace in (6.34) is taken over a degenerate Killing metric

(6.18), the pull-back of the symplectic current (6.34) is

J(δ1, δ2) ,
1

2
δ1

2ε ∧ δ2(iV + γBW )− (1↔ 2). (6.37)

It is easy to see why only the combination iV +γBW survives the pull-back. The pull-back

of the connection ω, hence also of A, has all the iso(2) n R components. However, the

pull-back eI∧eJ is only iso(2)-valued, as is obvious from (6.35). Furthermore, only the RR

and BB components survive the tracing because of the degeneracy of the metric (6.18).

Since eI ∧ eJ has no B-component, only the RR components survive in the symplectic

current, which gives rise to the combination in (6.37).

where 2ε is the area 2-form of some spherical cross-section of ∆. In the derivation of

the symplectic current it is sufficient to assume that the spherical cross-section foliates ∆

and is not necessarily a geometric 2-sphere. However, for the rest of our analysis we will

restrict ourselves to the unique foliation of ∆ in which each leaf is a geometric 2-sphere;

this is possible if and only if the isolated horizon ∆ is spherically symmetric. For such a
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horizon with a fixed area AIH =
∫

2ε 2 the 1-form W is closed and dV is proportional to
2ε [90, 99]

dW , 0, dV ,
4πi

AIH
2ε (6.38)

where d is the exterior derivative intrinsic to ∆. Using (6.38) we find that the symplectic

current 3-form is exact on ∆

J(δ1, δ2) , dj(δ1, δ2) where

j(δ1, δ2) = −AIH
8π

δ1(iV + γBW ) ∧ δ2(iV + γBW ). (6.39)

It is to be noted that in the iso(2) nR basis the 1-form iV + γBW = −2(ωR − γBωB) =:

−2ωCS.

We now choose a particular orientation of the relevant space-time boundaries M+, M−

and ∆, such that the current conservation equation (6.36) reduces to:

(

∫
M+

−
∫
M−

)J(δ1, δ2) =
AIH
2π

(

∫
S−

−
∫
S+

) (δ1ωCS ∧ δ2ωCS)

This gives a foliation independent symplectic structure, whose boundary part is given by

(putting back 4πGγB = 1)

Ω(δ1, δ2) = − AIH
8π2GγB

∫
S2

δ1ωCS ∧ δ2ωCS (6.40)

where S is the unique spherical cross-section of ∆ and ωCS = ωR − γBωB.

The form (6.40) suggests that on a spherically symmetric isolated horizon one can

take the effective boundary theory as a U(1) Chern-Simons theory. Two distinct cases of

U(1) arise: i) If either the pull-back of ωB vanishes on S [138] or one restricts the gauge

freedom (6.1) to a constant class (ξ = constant, as has been the original choice [24]) then

one gets a compact U(1), ii) In general, if no restrictions are imposed, then one gets a

noncompact U(1).

We summarize our conclusions as follows:

1. Starting from a first order, locally SL(2,C) invariant theory of gravity we find that

2We intentionally kep the suffix IH for the area A, for future purpose, when it will be used to denote

area of 2-sphere sections of isolated horizons
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the gauge invariance on a non-expanding horizon reduces to the subgroup ISO(2) n
R. The gauge invariance in the bulk remains SL(2,C); however, the non-ISO(2) n R
transformations are realized trivially on the horizon.

2. Because the Cartan-Killing form of residual subalgebra iso(2)nR is degenerate, even

a ISO(2) n R Chern Simons theory on the horizon can manifest only a U(1) × U(1)

invariance. Here however, only a single U(1) survives for a more subtle reason that has

been discussed in the paragraph following (6.37) and the effective U(1) is either compact

or noncompact, depending on some choices.

3. Although the ISO(2) n R gauge invariance is not manifest at the level of symplectic

structure (6.40), it may still play a role in the quantum theory of the horizon.



Chapter 7

Logarithmic Correction to Black-Hole Entropy:

Resolving a Contradiction

7.1 Introduction

In the introduction of the last chapter, we discussed the logarithmic correction to the

celebrated Bekenstein-Hawking area law (5.1). It was also mentioned that there is a

contradiction in computing the logarithmic correction to this formula, in the framework

of LQG itself. The purpose of our paper [134] and the present chapter is to show that

this contradiction is apparent and how a resolution can be reached.

For the sake of continuity let us recollect that the main idea of this approach involves

identifying a ‘boundary’ (CS) theory characterizing the degrees of freedom on an isolated

horizon (of fixed cross-sectional area), consistent with the boundary conditions used to

define such horizons [23, 90], and then counting the dimension of the Hilbert space of

the quantum version of this boundary theory [24,25,64,123,124]. This dimension is then

considered to be the exponential of the microcanonical entropy of the isolated horizon (IH).

Clearly this is an effective field theory technique. Here the existence of an IH (which is a

special case of a weak IH discussed in chapter 3 and of an non-expanding horizon (NEH)

discussed in the last chapter), is taken as the starting point. The dynamics of the bulk

space-time, by LQG prescription is probed by graphs, as detailed in 5.2. The IH now

acts as a null inner boundary of quantum space (on a spatial slice) punctured by edges

of the graph (serving as spin-network state in the quantum version) embedded in the

spatial slice M . One should keep in mind that in the framework of LQG, the existence of

100
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such a boundary is assumed from the start, and not derived as a solution of the quantum

Einstein equation (the Hamiltonian constraint, in a canonical description). Thus, one has

to further make the assumption that the quantum Einstein equation does indeed yield

space-times with this assumed property.

Referring back to 5.2, we see that within a canonical formulation, vacuum general

relativity is formulated on a partial Cauchy surface M in terms of densitised triads and

the Barbero-Immirzi (BI) class of SU(2) Lie-algebra valued connection one-forms (5.4).1

We introduce an IH as a null inner boundary of space-time with fixed cross sectional

area AIH [90]. We have defined a weak IH earlier in 3.2.1. One now adds a stronger

condition to that definition to make it an IH: [£ξ`,D] , 0 on tensors on ∆. Here D is the

induced connection on ∆.

In chapter 6 we proved that boundary conditions on a non-expanding horizon (NEH)

are strong enough to spell that residual gauge invariance on it is effectively U(1)2. An IH

being a special case of it can at most have that amount of symmetry since the additional

conditions for its definition does not deal with symmetry issues. In that sense, (6.40) still

holds as the symplectic structure of the theory describing dynamics on the IH. This is the

(pre)symplectic structure of an Abelian CS theory. But that is not sufficient for describing

horizon degrees of freedom. The gravitational interactions in the bulk are connected to

those on the horizon through the equations of motion (6.38). The second one clearly is

that of CS theory coupled to a source.

In this chapter we first aim to calculate the above mentioned correction to horizon

entropy considering the U(1) theory alone. Then we would move on to investigate what

happens if one assumes the theory being SU(2) instead. As it should happen, both give

the same result again establishing that physical results do not rely upon gauge choice.

1The reduction in gauge invariance from the full local Lorentz group (SL(2,C)) to the group of local

rotations (SU(2)) is made by gauge-fixing, whereby local Lorentz boosts are fixed on the spatial slice.
2However this study was done maintaining the full Lorentz-covariance of the theory, without referring

to canonical formulation. Since that computation was limited solely in the classical regime, we technically

did not face any obstacle. No reference to spatial foliation and projection of tensors pertaining to it, was

needed to be made. This is in contrast to the approach to be taken in this chapter, since here we will be

tackling the quantum theory face-on. And as is well-known, quantization of a theory with non-compact

gauge group (which SL(2,C) is) is way more difficult than the one with compact group SU(2).
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As for notational simplicity, we note that the su(2) Lie-algebra valued objects are

vectors in 3 dimension (dimension of SU(2)). Hence it is apt to use standard 3-vector

above-arrows. Dot and cross products between any two such objects should imply the

usual scalar product and the antisymmetric product for 3-vectors respectively.

7.2 The U(1) counting

The implementation of the isolated horizon boundary conditions and derivation of the

boundary symplectic structure has been accomplished at the classical level in [90] and in

a later follow-up work [24]. Now, LQG has inherent SU(2) gauge invariance, after a gauge

fixing from SL(2,C). From this point of view it is normal to view boundary theory to

have that amount of symmetry. Emergence of only the U(1) part (6.40) should therefore

be interpreted as a further fixing of gauge.

Let us illustrate this point in the light of the analysis presented in chapter 6. Consider

the Newmann-Penrose null tetrad used there. We can pick them up such that l and n are

respectively future and past directed internal tetrad vectors. Consequently ñI =
lI − nI√

2
can be interpreted as the unit time-like vector used in the canonical analysis (5.3) for

time-gauge fixing. On the other hand rI =
lI + nI√

2
is space-like. Once the gauge is fixed

to SU(2) imposing (5.3), we use ñ in projecting internal vectors to the 3d vector space.

This vector space furnishes also the adjoint representation of su(2). In the notation of

our choice, the projected version of rI defined above will be denoted by ~r.

We understand that the spatial foliations M do cut the IH ∆(≡ S2 ×R) at 2-spheres

(topologically). For the purpose of illustration of the gauge fixing to U(1), let us impose

that condition that ~r should be covariantly constant on the S2 foliations, with respect to

the Barbero-Immirzi connection (5.4). It is obvious such an internal vector field always

exists on the S2, that is,

D~r ≡ d~r + ~A× ~r = 0. (7.1)

Here ~A is pulled-back to the S2 of the SU(2) BI connection.The connection admits the

decomposition

~A = ~rB + ~C (7.2)
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with,

~r · ~C = 0 , ~r2 = 1

D~r = d~r + ~C × ~r = 0 . (7.3)

Observe that one can solve the second equation above explicitly for ~C

~C = −~r × d~r . (7.4)

The pullback of the curvature two-form to the S2 is

~F = d ~A+
1

2
~A ∧ ~A

= ~r

(
dB − 1

2
~r · d~r ∧ d~r

)
. (7.5)

The projection of this curvature along ~r is given by

F ≡ ~r · ~F = dB − 1

2
~r · d~r ∧ d~r . (7.6)

The second term in eq. (7.6) is actually a winding number density associated with maps

from S2 to S2; if we write it as −dΞ, then

1

8π

∫
S

dΞ = N ∈ Z (7.7)

Thus, we may write the U(1) curvature as

F = dB′ (7.8)

where, B′ ≡ B−Ξ. Note that this derivation is purely from the topological property of the

SU(2) bundle on S2. This is equivalent to the equation (6.38) with the identification F =

−iπγdV . We derived this as projected part of the equation of motion, which encapsulates

dynamical information.

Let us now concentrate on the quantum theory. We note that in LQG, for manifolds

with boundary, it is judicious to choose the Hilbert space to be the tensor product HV ⊗
HIH , with HV and HIH corresponding to the bulk spin-network space and the isolated

horizon one respectively. When quantizing (6.38), we note that right hand side accounts
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for the area 2-form of the horizon S2. The operator corresponding to area again gets

non-zero contribution on its spectrum (5.7) from the points on S2, which are punctured

by edges of the corresponding spin-network state of HV . It is therefore clear that for the

quantum isolated horizon, the U(1) connection B′ vanishes locally on the S2, except on

the punctures. Because of the nontrivial winding at each puncture, it is a nontrivial U(1)

bundle on S2. This is the contribution that accumulates to giving the counting of CS of

leading to the microcanonical entropy in this approach.

The counting now proceeds by solving (6.38) (in the following form) on HV ⊗HIH :

k

2π
F = −2ε, (7.9)

using suitable units, k ≡ AIH/2πγ with γ being the Barbero-Immirzi parameter. This

immediately translates, in the quantum version of the theory to

I ⊗ k

2π
F̂ (x)|ψV 〉 ⊗ |χIH〉U(1) = −

∑
n

δ(2)(x, xn)2εn ~r · ~Tn|ψV 〉 ⊗ |χIH〉U(1) , (7.10)

where, the sum is over a set of punctures carrying SU(2) spin representation Tn for the

nth puncture, and 2εn is the area 2-form for that puncture. It should be kept in mind

that upto O(l2P ), the sum of these areas over the entire set of punctures must equal the

fixed classical area AIH . This immediately implies that the states to be counted are U(1)

Chern-Simons theory states on the punctured sphere with the net spin projection along

~r vanishing: ~r ·
∑

n
~Tn = 0. Observe that one can always rotate ~r locally so that this is

possible, even though globally this vector corresponds to a nontrivial U(1) bundle on S2.

This U(1) counting has been done in a variety of ways [133,139]. For example, one can

geometrically quantize U(1) CS theory with spatial Riemann surface being a punctured 2-

sphere carrying spin projected representations. Most efficient technique however employs

Witten’s connection [3] between the dimensionality of the Hilbert space of CS theory

living on a punctured S2 (×R) and the number of conformal blocks of the boundary two

dimensional conformal field theory level k WZW model on the punctured S2. One also

makes use of the fusion algebra and the Verlinde formula for the representation matrices of

that algebra. In terms of the spins SU(2) spins j1, j2, . . . , jp on punctures, the dimension

of the space of U(1) (equivalent SU(2) spin-projected singlet) boundary states is (for
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k →∞)

N (j1, . . . , jp) =

p∏
n=1

jn∑
mn=−jn

(
δm1+···+mp,0

)
. (7.11)

Now the final result for the dimensionality of the U(1) Chern-Simons Hilbert is easily

derived from (7.11) (see [25]). For macroscopic (AIH >> l2P ) isolated horizons the corre-

sponding microcanonical entropy is given by

SIH = SBH −
1

2
logSBH + · · · . (7.12)

The leading term offers a fit to the BI parameter γ, which is prototype of the LQG

program. The obvious point of the whole conflict between the U(1) and the SU(2)

approach is the appearance of a logarithmic LQG correction to the Bekenstein-Hawking

area term, with a coefficient −1/2 instead of −3/2 as found above by doing the SU(2)

singlet counting [25]. This is obviously because of the apparent gauge reduction enforced

by IH boundary condition.

If SU(2) had intact dictated the symmetry of the problem the situation would differ

in an interesting fashion. Here we have taken the diagonal SU(2) generator parallel to the

covariantly constant internal vector field ~r chosen above. Thus, the generators orthogonal

to ~r get vanished, and hence the apparent discrepancy mentioned above. However, one

understands that from the bulk SU(2) covariance, the gauge gets fixed to the subgroup

U(1) due to boundary conditions. Whenever such a situation arises in canonical quantiza-

tion, one must not forget to implement the gauge-fixing condition as an operator relation

on the Hilbert space of quantum states. In the present case, the boundary condition forces

that the curvature of the full su(2) valued BI connection vanishing projection orthogonal

to ~r, (cf., the first part of (6.38)) i.e.,

~F × ~r = 0 . (7.13)

This can also be derived independently because of the gauge choice in terms of the special

internal vector ~r obeying D( ~A)~r = 0; one obtains the same constraint

[Da, Db]~r = 0 = ~Fab × ~r (7.14)
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where a, b are spacetime indices on S2. This constraint arises as an essential and inevitable

part of the additional gauge fixing enforced by the boundary condition on S2, reducing

the residual invariance on S2 (in time gauge) from SU(2) to U(1). The constraint imposes

a direct and very significant additional restriction on the class of ‘physical’ states con-

tributing to the microcanonical entropy, over and above that of U(1)-neutrality. If we use

the full su(2) version of (7.9) and consider the quantum version of the above additional

constraint on the spin network bulk and boundary states, we obtain,∑
n

δ(2)(x, xn) 2εn ε
ijkrjT kn |ψV 〉 ⊗ |χIH〉U(1) = 0 (7.15)

where i, j, k are internal vector indices and {T i} are the su(2) generators. One must now

count the dimension of IH states that satisfy the additional constraint (7.15) apart from

U(1) neutrality. This, unfortunately, has not been done in the literature on U(1) counting

approaches [139].

The importance of ((7.15)) is to imply that the representations on the punctures should

be such that the net SU(2) spin orthogonal to the direction ~r is zero. This then, along

with the net U(1) neutrality is the requirement that all admissible isolated horizon states

contributing to the microcanonical entropy are SU(2) singlets. (7.11) therefore should

get modified and the CS Hilbert space on the punctured S2 should exclude the the states

satisfying (7.15). Those states, in the conformal field theory perspective should not occur

in the space of the corresponding Verlinde blocks. Their contribution in the dimension of

the Hilbert space can be read off again as:

Ñ (j1, . . . , jp) =

p∏
n=1

jn∑
mn=−jn

(
1

2
δm1+···+mp,−1 +

1

2
δm1+···+mp,1

)
. (7.16)

In terms of the bulk spin-network, these overcounted states (with the net azimuthal

quantum number equal to zero) comes from net non-zero spin (1, 2, 3, ......) states. Now,

the key is to subtract Ñ from N . This leads exactly to the formula derived in [124].

Following the steps there and in [25], one then sums the above series (taking contributions

from spin 1/2, since this suffices in determining the log correction). This leads to the LQG

entropy as

SIH = SBH −
3

2
logSBH + const. + O(S−1

BH), (7.17)

where, the semi-classical Bekenstein Hawking entropy is given by (5.1).
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7.3 Recalling SU(2) singlet state counting

We have now proved what was promised in the outset of this chapter. It is the best time

to review the original state counting procedure of [25], where the horizon symmetry was

taken to be SU(2). There the complication of boundary conditions and the appearance of

the resulting constraints were not present. In that sense the previous section compliments

that work.

We would be brief and start with the su(2) generalized form of the equation of motion

(7.9):

k

2π
~F = − ~Σ . (7.18)

Here, Σ denotes the area 2-form of the S2 in question, but is su(2) valued and must

satisfy ~r · ~Σ = 2ε. This equation is implemented on the bulk-boundary Hilbert space very

similarly to (7.10):

I ⊗ k

2π
~̂F (x)|ψV 〉 ⊗ |χIH〉 = −

∑
n

δ(2)(x, xn) 2εnTn|ψV 〉 ⊗ |χIH〉 (7.19)

where again, the sum is over a set of punctures carrying SU(2) spin representation Tn for

the nth puncture, and 2εn is the area 2-form for that puncture. Given that upto O(l2P ), the

sum of these areas over the entire set of punctures must equal the fixed classical area AIH ,

one immediately realizes that the set of states to be counted must obey the constraint

that they are SU(2) singlets.

Exactly as shown in the U(1) projected case, in terms of the spins j1, j2, . . . , jp on

punctures, the dimension of the space of SU(2)-singlet boundary states is

N (j1, . . . , jp) =

p∏
n=1

jn∑
mn=−jn

(
δm1+···+mp,0 −

1

2
δm1+···+mp,−1 −

1

2
δm1+···+mp,1

)
. (7.20)

The last two terms precisely ensure that the counting is restricted to SU(2) singlet bound-

ary states, since these alone obey the ‘Gauss law constraint’ which ensures local gauge

invariance or ‘physicality’ of the counted states.

To extract the microcanonical entropy of the isolated horizon, one then follows the

footsteps of [25]; the entropy turns out to be

SIH = SBH −
3

2
logSBH + const. + O(S−1

BH), (7.21)
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There is absolutely no ambiguity in this infinite series, each of whose terms are finite

and calculable. This is the old known formula we desired to establish in the U(1) case,

bringing the contributions of the constraints.

In this view, we have been successful in resolving the tension between the two results

emerging from different amount of gauge invariance.



Chapter 8

Summary and Future Directions

Now we are in a stage to summarize the thesis. In a way to justify the title of the

thesis, we have shown how Chern Simons theory comes as a useful handle in different

situations arising in quantizing gravity. We however do not claim that all such situations

have been studied in the scope of this work. For example there are recent excitements

regarding super-conformal CS theory in the context of ABJM and Bagger-Lambert theory,

as discussed in the introduction 0.3.1 and in the front of 3d higher-spin theories studied

in the context of AdS holographic duality.

On the other hand the examples we worked out, particularly in 3 dimensions (where

gravity itself is a CS theory), were interesting in their own right. We introduced a term,

which augments the standard action of 3d gravity. This term keeps the topological fea-

ture of 3d gravity intact, in contrast to TMG. At least in 2 particular cases (chapters

2 and 4), this helped us perform a complete non-perturbative quantization. With pos-

itive cosmological constant (chapter 4), we even went on to produce a finite consistent

theory, courtesy to this newly introduced term. Beside these successes, there was this

old problem for asymptotically AdS space-times, where we studied our theory. That re-

sulted in extremely interesting developments. The key feature includes a modification of

Bekenstein-Hawking area law, BTZ class of black-holes. As a technical advancement, we

also made clear the appearance of long known central charge in asymptotic symmetry

algebra of AdS3 space-time, in terms of symplectic geometry.

4d quantum gravity forms another important body of this work. But standard CS

theory is defined in 3 dimensions (however one can define CS term in higher odd dimen-
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sions). Naturally the question arises about its relevance in 3+1 quantum gravity. However,

horizons (for example black hole event horizons or cosmological horizons or there gener-

alizations) of some particular type (of which event horizons are special case) were shown

to be described by CS theory. Using this classical result, black hole entropy has been cal-

culated. It is clear, that this calculations involve counting of quantum microstates of the

horizon in an ensemble of fixed area horizons. Here quantum CS appears as an effective

horizon theory. But these states are entangled in a way dictated by bulk quantum gravity

states. Here, some results from loop quantum gravity comes as useful. Depending upon

the CS gauge group of the horizon however, the microstate counting varies, when one

considers true quantum gravity corrections to the celebrated Bekenstein-Hawking area

law. This was a point of confusion and tension in the literature, which we resolved in the

chapters 6 and 7.

Some of the works, which can be done in this direction, have been planned. Higher

spin theories in 3 dimensions being described by CS theory is an important playground.

These can be started already based on some results presented in this work. However the

necessity and the consistency conditions put by the new parameter are no longer effective

in all higher spin interactions. Particular interesting case is the dS−3 case. Here one can

look on to find a finite and regularized higher spin quantum gravity starting from pure

CS terms.

In a dimension higher things become trickier. One wishes to look for CS theory for

horizons of of more general kind or of cosmological importance. Some advancement in

this direction too are being done.
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